Note on injective edge-coloring of graphs

被引:17
|
作者
Miao, Zhengke [1 ]
Song, Yimin [2 ]
Yu, Gexin [3 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou, Jiangsu, Peoples R China
[2] Anhui Univ, Sch Math Sci, Hefei, Peoples R China
[3] William & Mary, Dept Math, Williamsburg, VA USA
关键词
Injective edge-coloring; k-degenerate graphs; Maximum average degree; STRONG CHROMATIC INDEX;
D O I
10.1016/j.dam.2021.12.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An injective edge-coloring of graph G is an edge-coloring phi such that phi(e(1)) not equal (e(3)) for any three consecutive edges e(1), e(2) and e(3) of a path or a 3-cycle. Note that such an edge-coloring is not necessarily proper. The minimum number of colors required for an injective edge-coloring is called the injective chromatic index of G, denoted by chi(i)'(G). For every integer k >= 2, we show that every k-degenerate graph G with maximum degree Delta satisfies chi(i)'(G) <= (4k- 3)Delta - 2k(2) - k+3. We also prove that every graph G with Delta = 4, it is injective 9-edge-colorable when its maximum average degree mad(G) < 14/5, injective 10-edge-colorable when mad(G) < 3, injective 11-edge-colorable when mad(G) < 19/6, and injective 12-edge-colorable when mad(G) < 36/11. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:65 / 74
页数:10
相关论文
共 50 条
  • [21] A note on the strong edge-coloring of outerplanar graphs with maximum degree 3
    Shun-yi Liu
    He-ping Zhang
    Hong-liang Lu
    Yu-qing Lin
    Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 883 - 890
  • [22] A note on strong edge-coloring of claw-free cubic graphs
    Han, Zhenmeng
    Cui, Qing
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (03) : 2503 - 2508
  • [23] A Note on the Strong Edge-coloring of Outerplanar Graphs with Maximum Degree 3
    Liu, Shun-yi
    Zhang, He-ping
    Lu, Hong-liang
    Lin, Yu-qing
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (04): : 883 - 890
  • [24] A note on strong edge-coloring of claw-free cubic graphs
    Zhenmeng Han
    Qing Cui
    Journal of Applied Mathematics and Computing, 2023, 69 : 2503 - 2508
  • [25] RECENT PROGRESS ON EDGE-COLORING GRAPHS
    HILTON, AJW
    DISCRETE MATHEMATICS, 1987, 64 (2-3) : 303 - 307
  • [26] ACYCLIC EDGE-COLORING OF PLANAR GRAPHS
    Basavaraju, Manu
    Chandran, L. Sunil
    Cohen, Nathann
    Havet, Frederic
    Mueller, Tobias
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (02) : 463 - 478
  • [27] STRONG EDGE-COLORING OF PLANAR GRAPHS
    Song, Wen-Yao
    Miao, Lian-Ying
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (04) : 845 - 857
  • [28] The edge-coloring of graphs with small genus
    Fan, HL
    Fu, HL
    ARS COMBINATORIA, 2004, 73 : 219 - 224
  • [29] A Note on the Facial Edge-Coloring Conjecture
    Jendrol', Stanislav
    Onderko, Alfred
    GRAPHS AND COMBINATORICS, 2025, 41 (02)
  • [30] Decompositions for edge-coloring join graphs and cobipartite graphs
    Machado, Raphael C. S.
    de Figueiredo, Celina M. N.
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (12) : 1336 - 1342