Note on injective edge-coloring of graphs

被引:17
|
作者
Miao, Zhengke [1 ]
Song, Yimin [2 ]
Yu, Gexin [3 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou, Jiangsu, Peoples R China
[2] Anhui Univ, Sch Math Sci, Hefei, Peoples R China
[3] William & Mary, Dept Math, Williamsburg, VA USA
关键词
Injective edge-coloring; k-degenerate graphs; Maximum average degree; STRONG CHROMATIC INDEX;
D O I
10.1016/j.dam.2021.12.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An injective edge-coloring of graph G is an edge-coloring phi such that phi(e(1)) not equal (e(3)) for any three consecutive edges e(1), e(2) and e(3) of a path or a 3-cycle. Note that such an edge-coloring is not necessarily proper. The minimum number of colors required for an injective edge-coloring is called the injective chromatic index of G, denoted by chi(i)'(G). For every integer k >= 2, we show that every k-degenerate graph G with maximum degree Delta satisfies chi(i)'(G) <= (4k- 3)Delta - 2k(2) - k+3. We also prove that every graph G with Delta = 4, it is injective 9-edge-colorable when its maximum average degree mad(G) < 14/5, injective 10-edge-colorable when mad(G) < 3, injective 11-edge-colorable when mad(G) < 19/6, and injective 12-edge-colorable when mad(G) < 36/11. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:65 / 74
页数:10
相关论文
共 50 条
  • [31] Injective edge coloring of sparse graphs
    Lai, Hong-Jian
    Luo, Austin
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024,
  • [32] Injective edge coloring of sparse graphs
    Bu, Yuehua
    Qi, Chentao
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (02)
  • [33] From edge-coloring to strong edge-coloring
    Borozan, Valentin
    Chang, Gerard Jennhwa
    Cohen, Nathann
    Fujita, Shinya
    Narayanan, Narayanan
    Naserasr, Reza
    Valicov, Petru
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (02):
  • [34] The strong edge-coloring for graphs with small edge weight
    Chen, Lily
    Huang, Mingfang
    Yu, Gexin
    Zhou, Xiangqian
    DISCRETE MATHEMATICS, 2020, 343 (04)
  • [35] Optimal acyclic edge-coloring of cubic graphs
    Andersen, Lars Dovling
    Macajova, Edita
    Mazak, Jan
    JOURNAL OF GRAPH THEORY, 2012, 71 (04) : 353 - 364
  • [36] Strong edge-coloring of (3, Δ)-bipartite graphs
    Bensmail, Julien
    Lagoutte, Aurelie
    Valicov, Petru
    DISCRETE MATHEMATICS, 2016, 339 (01) : 391 - 398
  • [37] EDGE-COLORING SERIES-PARALLEL GRAPHS
    CASPI, Y
    DEKEL, E
    JOURNAL OF ALGORITHMS, 1995, 18 (02) : 296 - 321
  • [38] List Edge-Coloring and Total Coloring in Graphs of Low Treewidth
    Bruhn, Henning
    Lang, Richard
    Stein, Maya
    JOURNAL OF GRAPH THEORY, 2016, 81 (03) : 272 - 282
  • [39] Edge-coloring critical graphs with high degree
    Miao, LY
    Wu, JL
    DISCRETE MATHEMATICS, 2002, 257 (01) : 169 - 172
  • [40] IMPROVED EDGE-COLORING ALGORITHMS FOR PLANAR GRAPHS
    CHROBAK, M
    NISHIZEKI, T
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1990, 11 (01): : 102 - 116