Analytical Gradients of the Second-Order Moller-Plesset Energy Using Cholesky Decompositions

被引:21
|
作者
Bostrom, Jonas [1 ]
Veryazov, Valera [1 ]
Aquilante, Francesco [2 ]
Pedersen, Thomas Bondo [3 ]
Lindh, Roland [2 ,4 ]
机构
[1] Lund Univ, Dept Theoret Chem, Ctr Chem, S-22100 Lund, Sweden
[2] Uppsala Univ, Dept Chem Angstrom, Theoret Chem Programme, SE-75120 Uppsala, Sweden
[3] Univ Oslo, Dept Chem, Ctr Theoret & Computat Chem, N-0315 Oslo, Norway
[4] Uppsala Univ, Uppsala Ctr Computat Chem, SE-75120 Uppsala, Sweden
基金
瑞典研究理事会;
关键词
Cholesky decomposition; density fitting; MP2; analytic gradients; AUXILIARY BASIS-SETS; ELECTRONIC-STRUCTURE CALCULATIONS; DENSITY FITTING APPROXIMATIONS; HARTREE-FOCK EXCHANGE; PERTURBATION-THEORY; MOLECULAR CALCULATIONS; RI-MP2; ALGORITHM; INTEGRALS; EFFICIENCY;
D O I
10.1002/qua.24563
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An algorithm for computing analytical gradients of the second-order MOller-Plesset (MP2) energy using density fitting (DF) is presented. The algorithm assumes that the underlying canonical Hartree-Fock reference is obtained with the same auxiliary basis set, which we obtain by Cholesky decomposition (CD) of atomic electron repulsion integrals. CD is also used for the negative semidefinite MP2 amplitude matrix. Test calculations on the weakly interacting dimers of the S22 test set (Jureka et al., Phys. Chem. Chem. Phys. 2006, 8, 1985) show that the geometry errors due to the auxiliary basis set are negligible. With double-zeta basis sets, the error due to the DF approximation in intermolecular bond lengths is better than 0.1 pm. The computational time is typically reduced by a factor of 6-7. (c) 2013 Wiley Periodicals, Inc.
引用
收藏
页码:321 / 327
页数:7
相关论文
共 50 条
  • [41] Application of Local Second-Order Moller-Plesset Perturbation Theory to the Study of Structures in Solution
    Dieterich, Johannes M.
    Oliveira, Joao C. A.
    Mata, Ricardo A.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (09) : 3053 - 3060
  • [42] Efficient Reduced-Scaling Second-Order Moller-Plesset Perturbation Theory with Cholesky-Decomposed Densities and an Attenuated Coulomb Metric
    Glasbrenner, Michael
    Graf, Daniel
    Ochsenfeld, Christian
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (11) : 6856 - 6868
  • [43] Communications: Explicitly correlated second-order Moller-Plesset perturbation method for extended systems
    Shiozaki, Toru
    Hirata, So
    JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15):
  • [44] Calculation of frequency-dependent first hyperpolarizabilities using the second-order Moller-Plesset perturbation theory
    Kobayashi, T
    Sasagane, K
    Aiga, F
    Yamaguchi, K
    JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (24): : 11720 - 11733
  • [45] Assessing Spin-Component-Scaled Second-Order Moller-Plesset Theory Using Anharmonic Frequencies
    Domin, Dominik
    Benoit, David M.
    CHEMPHYSCHEM, 2011, 12 (17) : 3383 - 3391
  • [46] General biorthogonal projected bases as applied to second-order Moller-Plesset perturbation theory
    Weijo, Ville
    Manninen, Pekka
    Jorgensen, Poul
    Christiansen, Ove
    Olsen, Jeppe
    JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (07):
  • [47] Variational second-order Moller-Plesset theory based on the Luttinger-Ward functional
    Dahlen, NE
    von Barth, U
    JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (15): : 6826 - 6831
  • [48] An atomic orbital-based reformulation of energy gradients in second-order Moller-Plesset perturbation theory (vol 128, art no 154101, 2008)
    Schweizer, Sabine
    Doser, Bernd
    Ochsenfeld, Christian
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (20):
  • [49] Revisiting the Orbital Energy-Dependent Regularization of Orbital-Optimized Second-Order Moller-Plesset Theory
    Rettig, Adam
    Shee, James
    Lee, Joonho
    Head-Gordon, Martin
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (09) : 5382 - 5392
  • [50] Analytic Energy Gradient in Combined Second-Order Moller-Plesset Perturbation Theory and Polarizable Force Field Calculation
    Li, Hui
    JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (42): : 11824 - 11831