Analytical Gradients of the Second-Order Moller-Plesset Energy Using Cholesky Decompositions

被引:21
|
作者
Bostrom, Jonas [1 ]
Veryazov, Valera [1 ]
Aquilante, Francesco [2 ]
Pedersen, Thomas Bondo [3 ]
Lindh, Roland [2 ,4 ]
机构
[1] Lund Univ, Dept Theoret Chem, Ctr Chem, S-22100 Lund, Sweden
[2] Uppsala Univ, Dept Chem Angstrom, Theoret Chem Programme, SE-75120 Uppsala, Sweden
[3] Univ Oslo, Dept Chem, Ctr Theoret & Computat Chem, N-0315 Oslo, Norway
[4] Uppsala Univ, Uppsala Ctr Computat Chem, SE-75120 Uppsala, Sweden
基金
瑞典研究理事会;
关键词
Cholesky decomposition; density fitting; MP2; analytic gradients; AUXILIARY BASIS-SETS; ELECTRONIC-STRUCTURE CALCULATIONS; DENSITY FITTING APPROXIMATIONS; HARTREE-FOCK EXCHANGE; PERTURBATION-THEORY; MOLECULAR CALCULATIONS; RI-MP2; ALGORITHM; INTEGRALS; EFFICIENCY;
D O I
10.1002/qua.24563
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An algorithm for computing analytical gradients of the second-order MOller-Plesset (MP2) energy using density fitting (DF) is presented. The algorithm assumes that the underlying canonical Hartree-Fock reference is obtained with the same auxiliary basis set, which we obtain by Cholesky decomposition (CD) of atomic electron repulsion integrals. CD is also used for the negative semidefinite MP2 amplitude matrix. Test calculations on the weakly interacting dimers of the S22 test set (Jureka et al., Phys. Chem. Chem. Phys. 2006, 8, 1985) show that the geometry errors due to the auxiliary basis set are negligible. With double-zeta basis sets, the error due to the DF approximation in intermolecular bond lengths is better than 0.1 pm. The computational time is typically reduced by a factor of 6-7. (c) 2013 Wiley Periodicals, Inc.
引用
收藏
页码:321 / 327
页数:7
相关论文
共 50 条
  • [31] Quartic-scaling analytical energy gradient of scaled opposite-spin second-order Moller-Plesset perturbation theory
    Lochan, Rohini C.
    Shao, Yihan
    Head-Gordon, Martin
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2007, 3 (03) : 988 - 1003
  • [32] Staggered Mesh Method for Correlation Energy Calculations of Solids: Second-Order Moller-Plesset Perturbation Theory
    Xing, Xin
    Li, Xiaoxu
    Lin, Lin
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (08) : 4733 - 4745
  • [33] The analytical gradient of dual-basis resolution-of-the-identity second-order Moller-Plesset perturbation theory
    Distasio, Robert A., Jr.
    Steele, Ryan P.
    Head-Gordon, Martin
    MOLECULAR PHYSICS, 2007, 105 (19-22) : 2731 - 2742
  • [34] An effective energy gradient expression for divide-and-conquer second-order Moller-Plesset perturbation theory
    Kobayashi, Masato
    Nakai, Hiromi
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (04):
  • [35] An Integral-Direct Linear-Scaling Second-Order Moller-Plesset Approach
    Nagy, Peter R.
    Samu, Gyula
    Kallay, Mihaly
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (10) : 4897 - 4914
  • [36] Complete basis set limits of local second-order MOller-Plesset perturbation theory
    Jorgensen, Kameron R.
    Ramasesh, Vinay V.
    Hannibal, Sonja
    DeYonker, Nathan J.
    Wilson, Angela K.
    MOLECULAR PHYSICS, 2013, 111 (9-11) : 1178 - 1189
  • [37] The origin of deficiency of the supermolecule second-order Moller-Plesset approach for evaluating interaction energies
    Cybulski, Slawomir M.
    Lytle, Marion L.
    JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (14):
  • [38] Analytical gradient of restricted second-order Moller-Plesset correlation energy with the resolution of the identity approximation, applied to the TCNE dimer anion complex
    Rhee, Young Min
    DiStasio, Robert A., Jr.
    Lochan, Rohini C.
    Head-Gordon, Martin
    CHEMICAL PHYSICS LETTERS, 2006, 426 (1-3) : 197 - 203
  • [39] Communication: A new approach to dual-basis second-order Moller-Plesset calculations
    Deng, Jia
    Gill, Peter M. W.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (08):
  • [40] MOLLER-PLESSET ENERGY DERIVATIVES
    JORGENSEN, P
    HELGAKER, T
    JOURNAL OF CHEMICAL PHYSICS, 1988, 89 (03): : 1560 - 1570