Analytical Gradients of the Second-Order Moller-Plesset Energy Using Cholesky Decompositions

被引:21
|
作者
Bostrom, Jonas [1 ]
Veryazov, Valera [1 ]
Aquilante, Francesco [2 ]
Pedersen, Thomas Bondo [3 ]
Lindh, Roland [2 ,4 ]
机构
[1] Lund Univ, Dept Theoret Chem, Ctr Chem, S-22100 Lund, Sweden
[2] Uppsala Univ, Dept Chem Angstrom, Theoret Chem Programme, SE-75120 Uppsala, Sweden
[3] Univ Oslo, Dept Chem, Ctr Theoret & Computat Chem, N-0315 Oslo, Norway
[4] Uppsala Univ, Uppsala Ctr Computat Chem, SE-75120 Uppsala, Sweden
基金
瑞典研究理事会;
关键词
Cholesky decomposition; density fitting; MP2; analytic gradients; AUXILIARY BASIS-SETS; ELECTRONIC-STRUCTURE CALCULATIONS; DENSITY FITTING APPROXIMATIONS; HARTREE-FOCK EXCHANGE; PERTURBATION-THEORY; MOLECULAR CALCULATIONS; RI-MP2; ALGORITHM; INTEGRALS; EFFICIENCY;
D O I
10.1002/qua.24563
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An algorithm for computing analytical gradients of the second-order MOller-Plesset (MP2) energy using density fitting (DF) is presented. The algorithm assumes that the underlying canonical Hartree-Fock reference is obtained with the same auxiliary basis set, which we obtain by Cholesky decomposition (CD) of atomic electron repulsion integrals. CD is also used for the negative semidefinite MP2 amplitude matrix. Test calculations on the weakly interacting dimers of the S22 test set (Jureka et al., Phys. Chem. Chem. Phys. 2006, 8, 1985) show that the geometry errors due to the auxiliary basis set are negligible. With double-zeta basis sets, the error due to the DF approximation in intermolecular bond lengths is better than 0.1 pm. The computational time is typically reduced by a factor of 6-7. (c) 2013 Wiley Periodicals, Inc.
引用
收藏
页码:321 / 327
页数:7
相关论文
共 50 条
  • [21] A Kinetic Energy Fitting Metric for Resolution of the Identity Second-Order Moller-Plesset Perturbation Theory
    Lambrecht, Daniel S.
    Brandhorst, Kai
    Miller, William H.
    McCurdy, C. William
    Head-Gordon, Martin
    JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (13): : 2794 - 2801
  • [22] Implementation of Surjan's density matrix formulae for calculating second-order Moller-Plesset energy
    Kobayashi, M
    Nakai, H
    CHEMICAL PHYSICS LETTERS, 2006, 420 (1-3) : 250 - 255
  • [23] Low-scaling first-order properties within second-order Moller-Plesset perturbation theory using Cholesky decomposed density matrices
    Vogler, Sigurd
    Ludwig, Martin
    Maurer, Marina
    Ochsenfeld, Christian
    JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (02):
  • [24] Stability of Hydrogen Hydrates from Second-Order Moller-Plesset Perturbation Theory
    Kosata, Jan
    Merkl, Padryk
    Teeratchanan, Pattanasak
    Hermann, Andreas
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (18): : 5624 - 5629
  • [25] An efficient atomic orbital based second-order Moller-Plesset gradient program
    Saebo, S
    Baker, J
    Wolinski, K
    Pulay, P
    JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (24): : 11423 - 11431
  • [26] Explicitly correlated second-order Moller-Plesset methods with auxiliary basis sets
    Klopper, W
    Samson, CCM
    JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (15): : 6397 - 6410
  • [27] Pair natural orbitals in explicitly correlated second-order moller-plesset theory
    Tew, David P.
    Haettig, Christof
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2013, 113 (03) : 224 - 229
  • [28] A localized basis that allows fast and accurate second-order Moller-Plesset calculations
    Subotnik, JE
    Head-Gordon, M
    JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (03):
  • [29] Low-Scaling Tensor Hypercontraction in the Cholesky Molecular Orbital Basis Applied to Second-Order Moller-Plesset Perturbation Theory
    Bangerter, Felix H.
    Glasbrenner, Michael
    Ochsenfeld, Christian
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (01) : 211 - 221
  • [30] An approximate second-order Moller-Plesset perturbation approach for large molecular calculations
    Nakajima, Takahito
    Hirao, Kimihiko
    CHEMICAL PHYSICS LETTERS, 2006, 427 (1-3) : 225 - 229