Analytical Gradients of the Second-Order Moller-Plesset Energy Using Cholesky Decompositions

被引:21
|
作者
Bostrom, Jonas [1 ]
Veryazov, Valera [1 ]
Aquilante, Francesco [2 ]
Pedersen, Thomas Bondo [3 ]
Lindh, Roland [2 ,4 ]
机构
[1] Lund Univ, Dept Theoret Chem, Ctr Chem, S-22100 Lund, Sweden
[2] Uppsala Univ, Dept Chem Angstrom, Theoret Chem Programme, SE-75120 Uppsala, Sweden
[3] Univ Oslo, Dept Chem, Ctr Theoret & Computat Chem, N-0315 Oslo, Norway
[4] Uppsala Univ, Uppsala Ctr Computat Chem, SE-75120 Uppsala, Sweden
基金
瑞典研究理事会;
关键词
Cholesky decomposition; density fitting; MP2; analytic gradients; AUXILIARY BASIS-SETS; ELECTRONIC-STRUCTURE CALCULATIONS; DENSITY FITTING APPROXIMATIONS; HARTREE-FOCK EXCHANGE; PERTURBATION-THEORY; MOLECULAR CALCULATIONS; RI-MP2; ALGORITHM; INTEGRALS; EFFICIENCY;
D O I
10.1002/qua.24563
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An algorithm for computing analytical gradients of the second-order MOller-Plesset (MP2) energy using density fitting (DF) is presented. The algorithm assumes that the underlying canonical Hartree-Fock reference is obtained with the same auxiliary basis set, which we obtain by Cholesky decomposition (CD) of atomic electron repulsion integrals. CD is also used for the negative semidefinite MP2 amplitude matrix. Test calculations on the weakly interacting dimers of the S22 test set (Jureka et al., Phys. Chem. Chem. Phys. 2006, 8, 1985) show that the geometry errors due to the auxiliary basis set are negligible. With double-zeta basis sets, the error due to the DF approximation in intermolecular bond lengths is better than 0.1 pm. The computational time is typically reduced by a factor of 6-7. (c) 2013 Wiley Periodicals, Inc.
引用
收藏
页码:321 / 327
页数:7
相关论文
共 50 条
  • [1] Analytical energy gradients for local second-order Moller-Plesset perturbation theory
    El Azhary, A
    Rauhut, G
    Pulay, P
    Werner, HJ
    JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (13): : 5185 - 5193
  • [2] Analytical nuclear gradients of the explicitly correlated Moller-Plesset second-order energy
    Hoefener, Sebastian
    Klopper, Wim
    MOLECULAR PHYSICS, 2010, 108 (13) : 1783 - 1796
  • [3] Analytical energy gradients in second-order Moller-Plesset perturbation theory for extended systems
    Hirata, S
    Iwata, S
    JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (11): : 4147 - 4155
  • [4] Quartic scaling evaluation of canonical scaled opposite spin second-order Moller-Plesset correlation energy using Cholesky decompositions
    Aquilante, Francesco
    Pedersen, Thomas Bondo
    CHEMICAL PHYSICS LETTERS, 2007, 449 (4-6) : 354 - 357
  • [5] Analytical energy gradients for local second-order Moller-Plesset perturbation theory using density fitting approximations
    Schütz, M
    Werner, HJ
    Lindh, R
    Manby, FR
    JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (02): : 737 - 750
  • [6] Analytical energy gradients for local second-order MOller-Plesset perturbation theory using intrinsic bond orbitals
    Dornbach, Mark
    Werner, Hans-Joachim
    MOLECULAR PHYSICS, 2019, 117 (9-12) : 1252 - 1263
  • [7] A parallel second-order Moller-Plesset gradient
    Fletcher, GD
    Rendell, AP
    Sherwood, P
    MOLECULAR PHYSICS, 1997, 91 (03) : 431 - 438
  • [8] Analytic energy gradients for the orbital-optimized second-order Moller-Plesset perturbation theory
    Bozkaya, Ugur
    Sherrill, C. David
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (18):
  • [9] On the accuracy of second-order Moller-Plesset correlation energies
    Flores, JR
    CHEMICAL PHYSICS LETTERS, 1997, 270 (5-6) : 427 - 431
  • [10] An atomic orbital-based reformulation of energy gradients in second-order Moller-Plesset perturbation theory
    Schweizer, Sabine
    Doser, Bernd
    Ochsenfeld, Christian
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (15):