A SYMPLECTIC INTEGRATOR FOR HILL'S EQUATIONS

被引:25
|
作者
Quinn, Thomas [1 ]
Perrine, Randall P. [2 ]
Richardson, Derek C. [2 ]
Barnes, Rory [1 ]
机构
[1] Univ Washington, Dept Astron, Seattle, WA 98195 USA
[2] Univ Maryland, Dept Astron, College Pk, MD 20742 USA
来源
ASTRONOMICAL JOURNAL | 2010年 / 139卷 / 02期
关键词
methods: miscellaneous; methods: numerical; SHORT-PERIOD COMETS; SOLAR-SYSTEM; CLOSE ENCOUNTERS; SIMULATIONS; DYNAMICS; STABILITY; BEHAVIOR; ORIGIN; RINGS; DISK;
D O I
10.1088/0004-6256/139/2/803
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Hill's equations are an approximation that is useful in a number of areas of astrophysics including planetary rings and planetesimal disks. We derive a symplectic method for integrating Hill's equations based on a generalized leapfrog. This method is implemented in the parallel N-body code, PKDGRAV, and tested on some simple orbits. The method demonstrates a lack of secular changes in orbital elements, making it a very useful technique for integrating Hill's equations over many dynamical times. Furthermore, the method allows for efficient collision searching using linear extrapolation of particle positions.
引用
收藏
页码:803 / 807
页数:5
相关论文
共 50 条
  • [41] ISYMBA: a symplectic massive bodies integrator with planets interpolation
    Roig, Fernando
    Nesvorny, David
    Deienno, Rogerio
    Garcia, Matias J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 508 (04) : 4858 - 4868
  • [42] An improved symplectic integrator for Nose-Poincare thermostat
    Nosé, S
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2001, 70 (01) : 75 - 77
  • [43] Symplectic discretization for spectral element solution of Maxwell's equations
    Zhao, Yanmin
    Dai, Guidong
    Tang, Yifa
    Liu, Qinghuo
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (32)
  • [44] Unbounded solution components for nonlinear Hill's equations
    Mrziglod, T
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1995, 125 : 1131 - 1167
  • [45] Resonance tongues in Hill's equations:: A geometric approach
    Broer, H
    Simó, C
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 166 (02) : 290 - 327
  • [46] On the oscillation of Hill's equations under periodic forcing
    Kwong, MK
    Wong, JSW
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 320 (01) : 37 - 55
  • [47] On a class of Hill's equations having explicit solutions
    Bartuccelli, Michele
    Gentile, Guido
    Wright, James A.
    APPLIED MATHEMATICS LETTERS, 2013, 26 (10) : 1026 - 1030
  • [48] Vlasov and drift kinetic simulation methods based on the symplectic integrator
    Watanabe, TH
    Sugama, H
    TRANSPORT THEORY AND STATISTICAL PHYSICS, 2005, 34 (3-5): : 287 - 309
  • [49] Best constant for Ulam stability of Hill's equations
    Fukutaka, Ryuma
    Onitsuka, Masakazu
    BULLETIN DES SCIENCES MATHEMATIQUES, 2020, 163
  • [50] A Control Theory Approach to the Stability of Hill's Equations
    韩月才
    史少云
    王国铭
    Communications in Mathematical Research, 2003, (02) : 181 - 188