A SYMPLECTIC INTEGRATOR FOR HILL'S EQUATIONS

被引:25
|
作者
Quinn, Thomas [1 ]
Perrine, Randall P. [2 ]
Richardson, Derek C. [2 ]
Barnes, Rory [1 ]
机构
[1] Univ Washington, Dept Astron, Seattle, WA 98195 USA
[2] Univ Maryland, Dept Astron, College Pk, MD 20742 USA
来源
ASTRONOMICAL JOURNAL | 2010年 / 139卷 / 02期
关键词
methods: miscellaneous; methods: numerical; SHORT-PERIOD COMETS; SOLAR-SYSTEM; CLOSE ENCOUNTERS; SIMULATIONS; DYNAMICS; STABILITY; BEHAVIOR; ORIGIN; RINGS; DISK;
D O I
10.1088/0004-6256/139/2/803
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Hill's equations are an approximation that is useful in a number of areas of astrophysics including planetary rings and planetesimal disks. We derive a symplectic method for integrating Hill's equations based on a generalized leapfrog. This method is implemented in the parallel N-body code, PKDGRAV, and tested on some simple orbits. The method demonstrates a lack of secular changes in orbital elements, making it a very useful technique for integrating Hill's equations over many dynamical times. Furthermore, the method allows for efficient collision searching using linear extrapolation of particle positions.
引用
收藏
页码:803 / 807
页数:5
相关论文
共 50 条
  • [31] ON A FAMILY OF HILL'S EQUATIONS IN THE COMPLEX FIELD
    Makhlouf, Amar
    Nahon, Fernand
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1991, 52 (03): : 277 - 291
  • [32] High order symplectic schemes for Maxwell's equations
    Key Lab. of Computing and Signal Processing, Anhui Univ., Hefei 230039, China
    Xi Tong Cheng Yu Dian Zi Ji Shu/Syst Eng Electron, 2006, 3 (342-344):
  • [33] QUALITATIVE STUDY OF THE SYMPLECTIC STORMER-VERLET INTEGRATOR
    HARDY, DJ
    OKUNBOR, DI
    JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (22): : 8978 - 8982
  • [34] A fourth-order symplectic exponentially fitted integrator
    Van De Vyver, H
    COMPUTER PHYSICS COMMUNICATIONS, 2006, 174 (04) : 255 - 262
  • [35] A new symplectic integrator for stochastic Hamiltonian systems on manifolds
    Prasad, Rohan
    Panda, Satyam
    Hazra, Budhaditya
    PROBABILISTIC ENGINEERING MECHANICS, 2023, 74
  • [36] Backward error analysis for a multi-symplectic integrator
    Islas, AL
    Schober, CM
    MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, WAVES 2003, 2003, : 799 - 804
  • [37] Gauge properties of the guiding center variational symplectic integrator
    Squire, J.
    Qin, H.
    Tang, W. M.
    PHYSICS OF PLASMAS, 2012, 19 (05)
  • [38] DOES VARIABLE STEP SIZE RUIN A SYMPLECTIC INTEGRATOR
    SKEEL, RD
    GEAR, CW
    PHYSICA D, 1992, 60 (1-4): : 311 - 313
  • [39] APPLICABILITY OF SYMPLECTIC INTEGRATOR TO CLASSICALLY UNSTABLE QUANTUM DYNAMICS
    TAKAHASHI, K
    IKEDA, K
    JOURNAL OF CHEMICAL PHYSICS, 1993, 99 (11): : 8680 - 8694
  • [40] Global applicability of the symplectic integrator method of Hamiltonian systems
    Sun, YS
    Zhou, JL
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1996, 64 (03): : 185 - 195