A SYMPLECTIC INTEGRATOR FOR HILL'S EQUATIONS

被引:25
|
作者
Quinn, Thomas [1 ]
Perrine, Randall P. [2 ]
Richardson, Derek C. [2 ]
Barnes, Rory [1 ]
机构
[1] Univ Washington, Dept Astron, Seattle, WA 98195 USA
[2] Univ Maryland, Dept Astron, College Pk, MD 20742 USA
来源
ASTRONOMICAL JOURNAL | 2010年 / 139卷 / 02期
关键词
methods: miscellaneous; methods: numerical; SHORT-PERIOD COMETS; SOLAR-SYSTEM; CLOSE ENCOUNTERS; SIMULATIONS; DYNAMICS; STABILITY; BEHAVIOR; ORIGIN; RINGS; DISK;
D O I
10.1088/0004-6256/139/2/803
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Hill's equations are an approximation that is useful in a number of areas of astrophysics including planetary rings and planetesimal disks. We derive a symplectic method for integrating Hill's equations based on a generalized leapfrog. This method is implemented in the parallel N-body code, PKDGRAV, and tested on some simple orbits. The method demonstrates a lack of secular changes in orbital elements, making it a very useful technique for integrating Hill's equations over many dynamical times. Furthermore, the method allows for efficient collision searching using linear extrapolation of particle positions.
引用
收藏
页码:803 / 807
页数:5
相关论文
共 50 条
  • [21] Explicit Symplectic Integrator for Highly Eccentric Orbits
    Sławomir Breiter
    Celestial Mechanics and Dynamical Astronomy, 1998, 71 : 229 - 241
  • [22] Explicit symplectic integrator for highly eccentric orbits
    Breiter, S
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1998, 71 (04): : 229 - 241
  • [23] How is symplectic integrator applicable to molecular dynamics?
    Okabe, T
    Yamada, H
    Goda, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1996, 7 (05): : 613 - 633
  • [24] A symplectic integrator with arbitrary vector and scalar potentials
    Chacon-Golcher, Edwin
    Neri, Filippo
    PHYSICS LETTERS A, 2008, 372 (26) : 4661 - 4666
  • [25] Thoughts on symplectic groups and symplectic equations
    Abhyankar, SS
    Inglis, NFJ
    ALGEBRA, ARITHMETIC AND GEOMETRY WITH APPLICATIONS: PAPERS FROM SHREERAM S ABHYANKARS 70TH BIRTHDAY CONFERENCE, 2004, : 63 - 126
  • [26] Symplectic integrators for the matrix Hill equation
    Bader, Philipp
    Blanes, Sergio
    Ponsoda, Enrique
    Seydaoglu, Muaz
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 316 : 47 - 59
  • [27] Symplectic and multisymplectic numerical methods for Maxwell's equations
    Sun, Y.
    Tse, P. S. P.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (05) : 2076 - 2094
  • [28] Extension of Hill's Equations on Elliptical Orbits
    Eidel, Werner
    FORSCHUNG IM INGENIEURWESEN-ENGINEERING RESEARCH, 2018, 82 (01): : 59 - 69
  • [29] Ulam Stability for a Class of Hill's Equations
    Fukutaka, Ryuma
    Onitsuka, Masakazu
    SYMMETRY-BASEL, 2019, 11 (12):
  • [30] Stability regions for coupled Hill's equations
    Mahmoud, GM
    PHYSICA A, 1997, 242 (1-2): : 239 - 249