Combinatorics in affine flag varieties

被引:11
|
作者
Parkinson, James [4 ]
Ram, Arun [1 ,2 ]
Schwer, Christoph [3 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3010, Australia
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[3] Univ Cologne, Math Inst, D-50931 Cologne, Germany
[4] Graz Univ Technol, Inst Math Strukturtheorie, A-8010 Graz, Austria
基金
奥地利科学基金会; 美国国家科学基金会;
关键词
Loop Grassmannian; Path model; MV cycles; KAC-MOODY GROUPS; DECOMPOSITION; CRYSTALS;
D O I
10.1016/j.jalgebra.2008.04.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Littelmann path model gives a realization of the crystals of integrable representations of symmetrizable Kac-Moody Lie algebras. Recent work of Gaussent and Littelmann [S. Gaussent, P. Littelmann, LS galleries, the path model, and MV cycles, Duke Math. J. 127 (1) (2005) 35-88] and others [A. Braverman, D. Gaitsgory, Crystals via the affine Grassmannian, Duke Math. J. 107 (3) (2001) 561-575; S. Gaussent, G. Rousseau, Kac-Moody groups, hovels and Littelmann's paths, preprint, arXiv: math.GR/0703639, 2007] has demonstrated a connection between this model and the geometry of the loop Grassmanian. The alcove walk model is a version of the path model which is intimately connected to the combinatorics of the affine Hecke algebra. In this paper we define a refined alcove walk model which encodes the points of the affine flag variety. We show that this combinatorial indexing naturally indexes the cells in generalized Mirkovic-Vilonen intersections. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3469 / 3493
页数:25
相关论文
共 50 条
  • [41] Equivariant cobordism of flag varieties and of symmetric varieties
    Kiritchenko, Valentina
    Krishna, Amalendu
    TRANSFORMATION GROUPS, 2013, 18 (02) : 391 - 413
  • [42] Combinatorics of the K-theory of affine Grassmannians
    Morse, Jennifer
    ADVANCES IN MATHEMATICS, 2012, 229 (05) : 2950 - 2984
  • [43] THE STRUCTURE OF HILBERT FLAG VARIETIES
    HELMINCK, GF
    HELMINCK, AG
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1994, 30 (03) : 401 - 441
  • [44] Linear degenerations of flag varieties
    Irelli, G. Cerulli
    Fang, X.
    Feigin, E.
    Fourier, G.
    Reineke, M.
    MATHEMATISCHE ZEITSCHRIFT, 2017, 287 (1-2) : 615 - 654
  • [45] Affine planes and flag linear spaces
    Rajola, S
    Tallini, MS
    DESIGNS CODES AND CRYPTOGRAPHY, 2004, 31 (02) : 133 - 137
  • [46] Deformed cohomology of flag varieties
    Pechenik, Oliver
    Searles, Dominic
    MATHEMATICAL RESEARCH LETTERS, 2018, 25 (02) : 649 - 657
  • [47] Affine Planes and Flag Linear Spaces
    S. Rajola
    M. Scafati Tallini
    Designs, Codes and Cryptography, 2004, 31 : 133 - 137
  • [48] Equivariant sheaves on flag varieties
    Olaf M. Schnürer
    Mathematische Zeitschrift, 2011, 267 : 27 - 80
  • [49] Spherical actions on flag varieties
    Avdeev, R. S.
    Petukhov, A. V.
    SBORNIK MATHEMATICS, 2014, 205 (09) : 1223 - 1263
  • [50] On toric degenerations of flag varieties
    Fang, Xin
    Fourier, Ghislain
    Littelmann, Peter
    REPRESENTATION THEORY - CURRENT TRENDS AND PERSPECTIVES, 2017, : 187 - +