Combinatorics in affine flag varieties

被引:11
|
作者
Parkinson, James [4 ]
Ram, Arun [1 ,2 ]
Schwer, Christoph [3 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3010, Australia
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[3] Univ Cologne, Math Inst, D-50931 Cologne, Germany
[4] Graz Univ Technol, Inst Math Strukturtheorie, A-8010 Graz, Austria
基金
奥地利科学基金会; 美国国家科学基金会;
关键词
Loop Grassmannian; Path model; MV cycles; KAC-MOODY GROUPS; DECOMPOSITION; CRYSTALS;
D O I
10.1016/j.jalgebra.2008.04.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Littelmann path model gives a realization of the crystals of integrable representations of symmetrizable Kac-Moody Lie algebras. Recent work of Gaussent and Littelmann [S. Gaussent, P. Littelmann, LS galleries, the path model, and MV cycles, Duke Math. J. 127 (1) (2005) 35-88] and others [A. Braverman, D. Gaitsgory, Crystals via the affine Grassmannian, Duke Math. J. 107 (3) (2001) 561-575; S. Gaussent, G. Rousseau, Kac-Moody groups, hovels and Littelmann's paths, preprint, arXiv: math.GR/0703639, 2007] has demonstrated a connection between this model and the geometry of the loop Grassmanian. The alcove walk model is a version of the path model which is intimately connected to the combinatorics of the affine Hecke algebra. In this paper we define a refined alcove walk model which encodes the points of the affine flag variety. We show that this combinatorial indexing naturally indexes the cells in generalized Mirkovic-Vilonen intersections. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3469 / 3493
页数:25
相关论文
共 50 条
  • [31] DEGENERATIONS OF FLAG VARIETIES TO TORIC VARIETIES
    LAKSHMIBAI, V
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (09): : 1229 - 1234
  • [32] Motzkin Combinatorics in Linear Degenerations of the Flag Variety
    Irelli, Giovanni Cerulli
    Esposito, Francesco
    Marietti, Mario
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (22) : 19184 - 19204
  • [33] Combinatorics of flag simplicial 3-polytopes
    Volodin, V. D.
    RUSSIAN MATHEMATICAL SURVEYS, 2015, 70 (01) : 168 - 170
  • [34] Combinatorial flag varieties
    Borovik, AV
    Gelfand, IM
    White, N
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 91 (1-2) : 111 - 136
  • [35] On Rigidity of Flag Varieties
    Weber, Andrzej
    Wisniewski, Jaroslaw A.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (09) : 2967 - 2979
  • [36] Multiple Flag Varieties
    Smirnov E.Y.
    Journal of Mathematical Sciences, 2020, 248 (3) : 338 - 373
  • [37] EQUATIONS OF AFFINE FLAG MANIFOLD
    TOWBER, J
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A66 - A66
  • [38] Tropical flag varieties
    Brandt, Madeline
    Eur, Christopher
    Zhang, Leon
    ADVANCES IN MATHEMATICS, 2021, 384
  • [39] Constructing projective varieties in weighted flag varieties
    Qureshi, Muhammad Imran
    Szendroi, Balazs
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 : 786 - 798
  • [40] Equivariant cobordism of flag varieties and of symmetric varieties
    Valentina Kiritchenko
    Amalendu Krishna
    Transformation Groups, 2013, 18 : 391 - 413