Combinatorics in affine flag varieties

被引:11
|
作者
Parkinson, James [4 ]
Ram, Arun [1 ,2 ]
Schwer, Christoph [3 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3010, Australia
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[3] Univ Cologne, Math Inst, D-50931 Cologne, Germany
[4] Graz Univ Technol, Inst Math Strukturtheorie, A-8010 Graz, Austria
基金
奥地利科学基金会; 美国国家科学基金会;
关键词
Loop Grassmannian; Path model; MV cycles; KAC-MOODY GROUPS; DECOMPOSITION; CRYSTALS;
D O I
10.1016/j.jalgebra.2008.04.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Littelmann path model gives a realization of the crystals of integrable representations of symmetrizable Kac-Moody Lie algebras. Recent work of Gaussent and Littelmann [S. Gaussent, P. Littelmann, LS galleries, the path model, and MV cycles, Duke Math. J. 127 (1) (2005) 35-88] and others [A. Braverman, D. Gaitsgory, Crystals via the affine Grassmannian, Duke Math. J. 107 (3) (2001) 561-575; S. Gaussent, G. Rousseau, Kac-Moody groups, hovels and Littelmann's paths, preprint, arXiv: math.GR/0703639, 2007] has demonstrated a connection between this model and the geometry of the loop Grassmanian. The alcove walk model is a version of the path model which is intimately connected to the combinatorics of the affine Hecke algebra. In this paper we define a refined alcove walk model which encodes the points of the affine flag variety. We show that this combinatorial indexing naturally indexes the cells in generalized Mirkovic-Vilonen intersections. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3469 / 3493
页数:25
相关论文
共 50 条