The Littelmann path model gives a realization of the crystals of integrable representations of symmetrizable Kac-Moody Lie algebras. Recent work of Gaussent and Littelmann [S. Gaussent, P. Littelmann, LS galleries, the path model, and MV cycles, Duke Math. J. 127 (1) (2005) 35-88] and others [A. Braverman, D. Gaitsgory, Crystals via the affine Grassmannian, Duke Math. J. 107 (3) (2001) 561-575; S. Gaussent, G. Rousseau, Kac-Moody groups, hovels and Littelmann's paths, preprint, arXiv: math.GR/0703639, 2007] has demonstrated a connection between this model and the geometry of the loop Grassmanian. The alcove walk model is a version of the path model which is intimately connected to the combinatorics of the affine Hecke algebra. In this paper we define a refined alcove walk model which encodes the points of the affine flag variety. We show that this combinatorial indexing naturally indexes the cells in generalized Mirkovic-Vilonen intersections. (C) 2008 Elsevier Inc. All rights reserved.
机构:
Harbin Engn Univ, Sch Math Sci, Harbin 150001, Peoples R ChinaHarbin Engn Univ, Sch Math Sci, Harbin 150001, Peoples R China
Fan, Z.
Lai, C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Georgia, Dept Math, Athens, GA 30602 USAHarbin Engn Univ, Sch Math Sci, Harbin 150001, Peoples R China
Lai, C.
Li, Y.
论文数: 0引用数: 0
h-index: 0
机构:
Stat Univ New York Buffalo, Dept Math, Buffalo, NY 14260 USAHarbin Engn Univ, Sch Math Sci, Harbin 150001, Peoples R China
Li, Y.
Luo, L.
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Shanghai Key Lab Pure Math & Math Practice, Sch Math Sci, Shanghai 200241, Peoples R ChinaHarbin Engn Univ, Sch Math Sci, Harbin 150001, Peoples R China
Luo, L.
Wang, W.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Virginia, Dept Math, Charlottesville, VA 22904 USAHarbin Engn Univ, Sch Math Sci, Harbin 150001, Peoples R China