Combinatorics in affine flag varieties

被引:11
|
作者
Parkinson, James [4 ]
Ram, Arun [1 ,2 ]
Schwer, Christoph [3 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3010, Australia
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[3] Univ Cologne, Math Inst, D-50931 Cologne, Germany
[4] Graz Univ Technol, Inst Math Strukturtheorie, A-8010 Graz, Austria
基金
奥地利科学基金会; 美国国家科学基金会;
关键词
Loop Grassmannian; Path model; MV cycles; KAC-MOODY GROUPS; DECOMPOSITION; CRYSTALS;
D O I
10.1016/j.jalgebra.2008.04.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Littelmann path model gives a realization of the crystals of integrable representations of symmetrizable Kac-Moody Lie algebras. Recent work of Gaussent and Littelmann [S. Gaussent, P. Littelmann, LS galleries, the path model, and MV cycles, Duke Math. J. 127 (1) (2005) 35-88] and others [A. Braverman, D. Gaitsgory, Crystals via the affine Grassmannian, Duke Math. J. 107 (3) (2001) 561-575; S. Gaussent, G. Rousseau, Kac-Moody groups, hovels and Littelmann's paths, preprint, arXiv: math.GR/0703639, 2007] has demonstrated a connection between this model and the geometry of the loop Grassmanian. The alcove walk model is a version of the path model which is intimately connected to the combinatorics of the affine Hecke algebra. In this paper we define a refined alcove walk model which encodes the points of the affine flag variety. We show that this combinatorial indexing naturally indexes the cells in generalized Mirkovic-Vilonen intersections. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3469 / 3493
页数:25
相关论文
共 50 条
  • [1] Affine Deligne-Lusztig varieties in affine flag varieties
    Goertz, Ulrich
    Haines, Thomas J.
    Kottwitz, Robert E.
    Reuman, Daniel C.
    COMPOSITIO MATHEMATICA, 2010, 146 (05) : 1339 - 1382
  • [2] DIMENSIONS OF AFFINE DELIGNE-LUSZTIG VARIETIES IN AFFINE FLAG VARIETIES
    Goertz, Ulrich
    He, Xuhua
    DOCUMENTA MATHEMATICA, 2010, 15 : 1009 - 1028
  • [3] Affine pavings of quiver flag varieties
    Zhou, Xiaoxiang
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2025, 229 (06)
  • [4] Affine flag varieties of type D
    Chen, Quanyong
    Fan, Zhaobing
    Wang, Qi
    JOURNAL OF ALGEBRA, 2025, 674 : 257 - 275
  • [5] Schubert varieties in twisted affine flag varieties and local models
    Richarz, Timo
    JOURNAL OF ALGEBRA, 2013, 375 : 121 - 147
  • [6] Affine flag varieties and quantum symmetric pairs
    Fan, Z.
    Lai, C.
    Li, Y.
    Luo, L.
    Wang, W.
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 265 (1285) : V - +
  • [7] Twisted loop groups and their affine flag varieties
    Pappas, G.
    Rapoport, M.
    ADVANCES IN MATHEMATICS, 2008, 219 (01) : 118 - 198
  • [8] Degenerate Affine Flag Varieties and Quiver Grassmannians
    Alexander Pütz
    Algebras and Representation Theory, 2022, 25 : 91 - 119
  • [9] Degenerate Affine Flag Varieties and Quiver Grassmannians
    Puetz, Alexander
    ALGEBRAS AND REPRESENTATION THEORY, 2022, 25 (01) : 91 - 119
  • [10] String cone and superpotential combinatorics for flag and Schubert varieties in type A
    Bossinger, L.
    Fourier, G.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 167 : 213 - 256