Simple MAP decoding of first-order Reed-Muller and hamming codes

被引:41
|
作者
Ashikhmin, A [1 ]
Litsyn, S
机构
[1] Bell Labs, Lucent Technol, Murray Hill, NJ 07974 USA
[2] Tel Aviv Univ, Dept Elect Engn Syst, IL-69978 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
Hamming codes; maximum a posteriori (MAP) decoding; Reed-Muller codes;
D O I
10.1109/TIT.2004.831835
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A maximum a posteriori (MAP) probability decoder of a block code minimizes the probability of error for each transmitted symbol separately. The standard way of implementing MAP decoding of a linear code is the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm, which is based on a trellis representation of the code. The complexity of the BCJR algorithm for the first-order Reed-Muller (RM-1) codes and Hamming codes is proportional to n(2), where n is the code's length. In this correspondence, we present new MAP decoding algorithms for binary and nonbinary RM-1 and Hamming codes. The proposed algorithms have complexities proportional to q(2)n log(q) n, where q is the alphabet size. In particular, for the binary codes this yields complexity of order n log n.
引用
收藏
页码:1812 / 1818
页数:7
相关论文
共 50 条
  • [41] On the second Hamming weight of some Reed-Muller type codes
    Carvalho, Cicero
    FINITE FIELDS AND THEIR APPLICATIONS, 2013, 24 : 88 - 94
  • [42] COSET LEADERS OF THE FIRST-ORDER REED-MULLER CODES IN FOUR NEW CLASSES OF BOOLEAN FUNCTIONS
    Carlet, Claude
    Feukoua, Serge
    Salagean, Ana
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024,
  • [43] Error exponents for recursive decoding of Reed-Muller codes
    Burnashev, Marat
    Dumer, Ilya
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 704 - +
  • [44] A New Permutation Decoding Method for Reed-Muller Codes
    Kamenev, Mikhail
    Kameneva, Yulia
    Kurmaev, Oleg
    Maevskiy, Alexey
    2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 26 - 30
  • [45] Decoding Reed-Muller Codes Over Product Sets
    Kim, John Y.
    Kopparty, Swastik
    31ST CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC 2016), 2016, 50
  • [46] Decoding Reed-Muller Codes over Product Sets
    Kim, John Y.
    Kopparty, Swastik
    THEORY OF COMPUTING, 2017, 13
  • [47] Improved partial permutation decoding for Reed-Muller codes
    Key, J. D.
    McDonough, T. P.
    Mavron, V. C.
    DISCRETE MATHEMATICS, 2017, 340 (04) : 722 - 728
  • [48] On recursive decoding with sublinear complexity for Reed-Muller codes
    Dumer, I
    2003 IEEE INFORMATION THEORY WORKSHOP, PROCEEDINGS, 2003, : 14 - 17
  • [49] FAST CORRELATION DECODING OF REED-MULLER CODES.
    Karyakin, Yu.D.
    Problems of information transmission, 1987, 23 (02) : 121 - 129
  • [50] Recursive list decoding for reed-muller codes and their subcodes
    Dumer, I
    Shabunov, K
    INFORMATION, CODING AND MATHEMATICS, 2002, 687 : 279 - 298