Decoding Reed-Muller Codes over Product Sets

被引:0
|
作者
Kim, John Y. [1 ]
Kopparty, Swastik [2 ,3 ]
机构
[1] Virtu Financial, Austin, TX 78746 USA
[2] Rutgers State Univ, Dept Math, New Brunswick, NJ USA
[3] Rutgers State Univ, Dept Comp Sci, New Brunswick, NJ USA
基金
美国国家科学基金会;
关键词
error-correcting codes; Reed-Muller codes; algebraic algorithms; Schwartz-Zippel lemma; SOLOMON CODES;
D O I
10.4086/toc.2017.v011a021
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give a polynomial-time algorithm to decode multivariate polynomial codes of degree d up to half their minimum distance, when the evaluation points are an arbitrary product set S-m, for every d < vertical bar S vertical bar. Previously known algorithms could achieve this only if the set S had some very special algebraic structure, or if the degree d was significantly smaller than vertical bar S vertical bar. We also give a near-linear-time randomized algorithm, based on tools from list-decoding, to decode these codes from nearly half their minimum distance, provided d < (1- epsilon) vertical bar S vertical bar for constant epsilon > 0. Our result gives an m-dimensional generalization of the well-known decoding algorithms for Reed-Solomon codes, and can be viewed as giving an algorithmic version of the Schwartz-Zippel lemma.
引用
收藏
页数:38
相关论文
共 50 条
  • [1] Decoding Reed-Muller Codes Over Product Sets
    Kim, John Y.
    Kopparty, Swastik
    31ST CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC 2016), 2016, 50
  • [2] Decoding reed-muller codes over product sets
    Kim J.Y.
    Kopparty S.
    Theory of Computing, 2017, 13 : 1 - 38
  • [3] Recursive decoding of Reed-Muller codes
    Dumer, I
    Shabunov, K
    2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 63 - 63
  • [4] Reed-Muller codes and permutation decoding
    Key, J. D.
    McDonough, T. P.
    Mavron, V. C.
    DISCRETE MATHEMATICS, 2010, 310 (22) : 3114 - 3119
  • [5] A hybrid decoding of Reed-Muller codes
    Li, Shuang
    Zhang, Shicheng
    Chen, Zhenxing
    Kang, Seog Geun
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2017, 13 (02):
  • [6] Decoding Variants of Reed-Muller Codes over Finite Grids
    Srinivasan, Srikanth
    Tripathi, Utkarsh
    Venkitesh, S.
    ACM TRANSACTIONS ON COMPUTATION THEORY, 2020, 12 (04)
  • [7] Successive Cancellation List Decoding of Product Codes With Reed-Muller Component Codes
    Coskun, Mustafa Cemil
    Jerkovits, Thomas
    Liva, Gianluigi
    IEEE COMMUNICATIONS LETTERS, 2019, 23 (11) : 1972 - 1976
  • [8] Adaptive Viterbi Decoding of Reed-Muller Codes
    Mahran, Ashraf M.
    Magdy, Ahmed
    Elghandour, Ahmed
    2017 12TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND SYSTEMS (ICCES), 2017, : 314 - 319
  • [9] Automorphism Ensemble Decoding of Reed-Muller Codes
    Geiselhart, Marvin
    Elkelesh, Ahmed
    Ebada, Moustafa
    Cammerer, Sebastian
    ten Brink, Stephan
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (10) : 6424 - 6438
  • [10] Sequential decoding of binary Reed-Muller codes
    Stolte, Norbert
    Sorger, Ulrich
    AEU-Archiv fur Elektronik und Ubertragungstechnik, 2000, 54 (06): : 412 - 420