Simple MAP decoding of first-order Reed-Muller and hamming codes

被引:41
|
作者
Ashikhmin, A [1 ]
Litsyn, S
机构
[1] Bell Labs, Lucent Technol, Murray Hill, NJ 07974 USA
[2] Tel Aviv Univ, Dept Elect Engn Syst, IL-69978 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
Hamming codes; maximum a posteriori (MAP) decoding; Reed-Muller codes;
D O I
10.1109/TIT.2004.831835
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A maximum a posteriori (MAP) probability decoder of a block code minimizes the probability of error for each transmitted symbol separately. The standard way of implementing MAP decoding of a linear code is the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm, which is based on a trellis representation of the code. The complexity of the BCJR algorithm for the first-order Reed-Muller (RM-1) codes and Hamming codes is proportional to n(2), where n is the code's length. In this correspondence, we present new MAP decoding algorithms for binary and nonbinary RM-1 and Hamming codes. The proposed algorithms have complexities proportional to q(2)n log(q) n, where q is the alphabet size. In particular, for the binary codes this yields complexity of order n log n.
引用
收藏
页码:1812 / 1818
页数:7
相关论文
共 50 条
  • [31] Automorphism Ensemble Decoding of Reed-Muller Codes
    Geiselhart, Marvin
    Elkelesh, Ahmed
    Ebada, Moustafa
    Cammerer, Sebastian
    ten Brink, Stephan
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (10) : 6424 - 6438
  • [32] Sequential decoding of binary Reed-Muller codes
    Stolte, Norbert
    Sorger, Ulrich
    AEU-Archiv fur Elektronik und Ubertragungstechnik, 2000, 54 (06): : 412 - 420
  • [33] NEW DECODING ALGORITHM FOR REED-MULLER CODES
    TOKIWA, K
    SUGIMURA, T
    KASAHARA, M
    NAMEKAWA, T
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1982, 28 (05) : 779 - 787
  • [34] Recursive and permutation decoding for Reed-Muller codes
    Dumer, I
    Shabunov, K
    ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, : 146 - 146
  • [35] A decoding algorithm for the 1st order Reed-Muller codes
    Hahn, S
    Kim, DG
    Kim, YS
    UTILITAS MATHEMATICA, 1997, 51 : 9 - 20
  • [36] On a decoding algorithm of mΘ Reed-Muller codes
    Armand, Tsimi Jean
    Cedric, Pemha Binyam Gabriel
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2023, 26 (02): : 341 - 358
  • [37] Sequential decoding of binary Reed-Muller codes
    Stolte, N
    Sorger, U
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2000, 54 (06) : 412 - 420
  • [38] On polylogarithmic decoding complexity for Reed-Muller codes
    Dumer, I
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 326 - 326
  • [39] DECODING REED-MULLER CODES BY MULTILAYER PERCEPTRONS
    TSENG, YH
    WU, JL
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1993, 75 (04) : 589 - 594
  • [40] Decoding of second order Reed-Muller codes with a large number of errors
    Sakkour, B
    Proceedings of the IEEE ITSOC Information Theory Workshop 2005 on Coding and Complexity, 2005, : 176 - 178