Bounce law at the corners of convex billiards

被引:0
|
作者
Cabot, A [1 ]
机构
[1] Univ Limoges, Lab LACO, F-87060 Limoges, France
关键词
convex billiards; set regularization; variational approximation; evolution differential inclusions; shock solutions; descartes law;
D O I
10.1016/j.na.2004.03.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let C be a convex subset of R-n. Given any elastic shock solution x((.)) of the differential inclusion x (t) + N-C(x(t)) There Exists 0, t > 0, the bounce of the trajectory at a regular point of the boundary of C follows the Descartes law. The aim of the paper is to exhibit the bounce law at the comers of the boundary. For that purpose, we define a sequence (C,,) of regular sets tending to C as epsilon --> 0, then we consider the approximate differential inclusion x(epsilon)(t) + N-Cepsilon,(x(epsilon)(t)) There Exists 0, and finally we pass to the limit when t; --> 0. For approximate sets defined by C-epsilon = C + epsilonB (where B is the unit euclidean ball of R-n), we recover the bounce law associated with the Moreau-Yosida regularization. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:597 / 614
页数:18
相关论文
共 50 条
  • [41] Periodic trajectories in 3-dimensional convex billiards
    Michael Farber
    Serge Tabachnikov
    manuscripta mathematica, 2002, 108 : 431 - 437
  • [42] MAXIMIZING ORBITS FOR HIGHER-DIMENSIONAL CONVEX BILLIARDS
    Bialy, Misha
    JOURNAL OF MODERN DYNAMICS, 2009, 3 (01) : 51 - 59
  • [43] SUPERSONIC LAMINAR BOUNDARY LAYERS NEAR CONVEX CORNERS
    STEWARTS.K
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1970, 319 (1538): : 289 - &
  • [44] Behavior of some CMC capillary surfaces at convex corners
    Crenshaw, Julie
    Lancaster, Kirk
    PACIFIC JOURNAL OF MATHEMATICS, 2006, 224 (02) : 231 - 246
  • [45] How to Cut Corners and Get Bounded Convex Curvature
    Mikkel Abrahamsen
    Mikkel Thorup
    Discrete & Computational Geometry, 2023, 69 : 1195 - 1231
  • [46] Efficient Rendering of Rounded Corners and Edges for Convex Objects
    Courtin, Simon
    Horna, Sebastien
    Ribadiere, Mickael
    Poulin, Pierre
    Meneveaux, Daniel
    ADVANCES IN COMPUTER GRAPHICS, CGI 2019, 2019, 11542 : 291 - 303
  • [47] A universal law for capillary rise in corners
    Ponomarenko, Alexandre
    Quere, David
    Clanet, Christophe
    JOURNAL OF FLUID MECHANICS, 2011, 666 : 146 - 154
  • [48] Corner enhancement effect: comparing convex and concave corners
    Bertamini, M.
    Helmy, M. Mohamed
    Skarratt, P. A.
    Cole, G. G.
    PERCEPTION, 2009, 38 : 26 - 26
  • [49] Information theoretic parameters of noncommutative graphs and convex corners
    Boreland, Gareth
    Todorov, Ivan G.
    Winter, Andreas
    ILLINOIS JOURNAL OF MATHEMATICS, 2022, 66 (02) : 123 - 187
  • [50] How to Cut Corners and Get Bounded Convex Curvature
    Abrahamsen, Mikkel
    Thorup, Mikkel
    DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 69 (04) : 1195 - 1231