Bounce law at the corners of convex billiards

被引:0
|
作者
Cabot, A [1 ]
机构
[1] Univ Limoges, Lab LACO, F-87060 Limoges, France
关键词
convex billiards; set regularization; variational approximation; evolution differential inclusions; shock solutions; descartes law;
D O I
10.1016/j.na.2004.03.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let C be a convex subset of R-n. Given any elastic shock solution x((.)) of the differential inclusion x (t) + N-C(x(t)) There Exists 0, t > 0, the bounce of the trajectory at a regular point of the boundary of C follows the Descartes law. The aim of the paper is to exhibit the bounce law at the comers of the boundary. For that purpose, we define a sequence (C,,) of regular sets tending to C as epsilon --> 0, then we consider the approximate differential inclusion x(epsilon)(t) + N-Cepsilon,(x(epsilon)(t)) There Exists 0, and finally we pass to the limit when t; --> 0. For approximate sets defined by C-epsilon = C + epsilonB (where B is the unit euclidean ball of R-n), we recover the bounce law associated with the Moreau-Yosida regularization. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:597 / 614
页数:18
相关论文
共 50 条
  • [21] ARNOLD DIFFUSION IN MULTIDIMENSIONAL CONVEX BILLIARDS
    Clarke, Andrew
    Turaev, Dmitry
    DUKE MATHEMATICAL JOURNAL, 2023, 172 (10) : 1813 - 1878
  • [22] A Franks' lemma for convex planar billiards
    Visscher, Daniel
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2015, 30 (03): : 333 - 340
  • [23] Elliptic islands in strictly convex billiards
    Carneiro, MJD
    Kamphorst, SO
    de Carvalho, SP
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 : 799 - 812
  • [24] NONSMOOTH CONVEX CAUSTICS FOR BIRKHOFF BILLIARDS
    Arnold, Maxim
    Bialy, Misha
    PACIFIC JOURNAL OF MATHEMATICS, 2018, 295 (02) : 257 - 269
  • [25] Isoperimetric inequalities for convex areas with corners
    Dinghas, A
    MATHEMATISCHE ZEITSCHRIFT, 1943, 48 : 428 - 440
  • [26] Polygon simplification by minimizing convex corners
    Bahoo, Yeganeh
    Durocher, Stephane
    Keil, J. Mark
    Mondal, Debajyoti
    Mehrabi, Saeed
    Mehrpour, Sahar
    THEORETICAL COMPUTER SCIENCE, 2019, 791 : 76 - 86
  • [27] Polygon Simplification by Minimizing Convex Corners
    Bahoo, Yeganeh
    Durocher, Stephane
    Keil, J. Mark
    Mehrabi, Saeed
    Mehrpour, Sahar
    Mondal, Debajyoti
    COMPUTING AND COMBINATORICS, COCOON 2016, 2016, 9797 : 547 - 559
  • [28] Partial Weyl law for billiards
    Baecker, A.
    Ketzmerick, R.
    Loeck, S.
    Schanz, H.
    EPL, 2011, 94 (03)
  • [29] CONVEX BILLIARDS AND A THEOREM BY HOPF,E.
    BIALY, M
    MATHEMATISCHE ZEITSCHRIFT, 1993, 214 (01) : 147 - 154
  • [30] On the Existence of Fagnano Trajectories in Convex Polygonal Billiards
    Deniz, A.
    Ratiu, A. V.
    REGULAR & CHAOTIC DYNAMICS, 2009, 14 (02): : 312 - 322