A Franks' lemma for convex planar billiards

被引:2
|
作者
Visscher, Daniel [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
来源
基金
美国国家科学基金会;
关键词
convex billiards; Franks' lemma; perturbation; linear Poincare map; POSITIVE TOPOLOGICAL-ENTROPY; GEODESIC-FLOWS; HYPERBOLICITY;
D O I
10.1080/14689367.2015.1046815
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let. be an orbit of the billiard flow on a convex planar billiard table; then the perpendicular part of the derivative of the billiard flow along. is a symplectic linear map DP. This paper contains a proof of the following Franks' lemma for a residual set of convex planar billiard tables: for any closed orbit, the map DP can be perturbed freely within a neighbourhood in Sp(1) by a C-2-small perturbation in the space of convex planar billiard tables.
引用
收藏
页码:333 / 340
页数:8
相关论文
共 50 条
  • [1] CONVEX BILLIARDS
    GRUBER, PM
    GEOMETRIAE DEDICATA, 1990, 33 (02) : 205 - 226
  • [2] A Franks' lemma that preserves invariant manifolds
    Gourmelon, Nikolaz
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2016, 36 : 1167 - 1203
  • [3] Convex billiards on convex spheres
    Zhang, Pengfei
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (04): : 793 - 816
  • [4] CIRCULAR BILLIARDS AND PARALLEL AXIOM IN CONVEX BILLIARDS
    Tamura, Shinetsu
    Innami, Nobuhiro
    TSUKUBA JOURNAL OF MATHEMATICS, 2009, 33 (01) : 147 - 160
  • [5] A NEW PROOF OF FRANKS' LEMMA FOR GEODESIC FLOWS
    Visscher, Daniel
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (11) : 4875 - 4895
  • [6] Stochastic perturbations of convex billiards
    Markarian, R.
    Rolla, L. T.
    Sidoravicius, V.
    Tal, F. A.
    Vares, M. E.
    NONLINEARITY, 2015, 28 (12) : 4425 - 4434
  • [7] Homoclinic points for convex billiards
    Xia, Zhihong
    Zhang, Pengfei
    NONLINEARITY, 2014, 27 (06) : 1181 - 1192
  • [8] Expansiveness and Hyperbolicity in Convex Billiards
    Mário Bessa
    João Lopes Dias
    Maria Joana Torres
    Regular and Chaotic Dynamics, 2021, 26 : 756 - 762
  • [9] Expansiveness and Hyperbolicity in Convex Billiards
    Bessa, Mario
    Dias, Joao Lopes
    Torres, Maria Joana
    REGULAR & CHAOTIC DYNAMICS, 2021, 26 (06): : 756 - 762
  • [10] SPECTRAL DUALITY FOR PLANAR BILLIARDS
    ECKMANN, JP
    PILLET, CA
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 170 (02) : 283 - 313