A Franks' lemma for convex planar billiards

被引:2
|
作者
Visscher, Daniel [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
来源
基金
美国国家科学基金会;
关键词
convex billiards; Franks' lemma; perturbation; linear Poincare map; POSITIVE TOPOLOGICAL-ENTROPY; GEODESIC-FLOWS; HYPERBOLICITY;
D O I
10.1080/14689367.2015.1046815
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let. be an orbit of the billiard flow on a convex planar billiard table; then the perpendicular part of the derivative of the billiard flow along. is a symplectic linear map DP. This paper contains a proof of the following Franks' lemma for a residual set of convex planar billiard tables: for any closed orbit, the map DP can be perturbed freely within a neighbourhood in Sp(1) by a C-2-small perturbation in the space of convex planar billiard tables.
引用
收藏
页码:333 / 340
页数:8
相关论文
共 50 条