Bounce law at the corners of convex billiards

被引:0
|
作者
Cabot, A [1 ]
机构
[1] Univ Limoges, Lab LACO, F-87060 Limoges, France
关键词
convex billiards; set regularization; variational approximation; evolution differential inclusions; shock solutions; descartes law;
D O I
10.1016/j.na.2004.03.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let C be a convex subset of R-n. Given any elastic shock solution x((.)) of the differential inclusion x (t) + N-C(x(t)) There Exists 0, t > 0, the bounce of the trajectory at a regular point of the boundary of C follows the Descartes law. The aim of the paper is to exhibit the bounce law at the comers of the boundary. For that purpose, we define a sequence (C,,) of regular sets tending to C as epsilon --> 0, then we consider the approximate differential inclusion x(epsilon)(t) + N-Cepsilon,(x(epsilon)(t)) There Exists 0, and finally we pass to the limit when t; --> 0. For approximate sets defined by C-epsilon = C + epsilonB (where B is the unit euclidean ball of R-n), we recover the bounce law associated with the Moreau-Yosida regularization. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:597 / 614
页数:18
相关论文
共 50 条
  • [1] Evanescent wave approach to diffractive phenomena in convex billiards with corners
    Wiersig, J
    Carlo, GG
    PHYSICAL REVIEW E, 2003, 67 (04):
  • [2] Soft Billiards with Corners
    D. Turaev
    V. Rom-Kedar
    Journal of Statistical Physics, 2003, 112 : 765 - 813
  • [3] Soft billiards with corners
    Turaev, D
    Rom-Kedar, V
    JOURNAL OF STATISTICAL PHYSICS, 2003, 112 (3-4) : 765 - 813
  • [4] CONVEX BILLIARDS
    GRUBER, PM
    GEOMETRIAE DEDICATA, 1990, 33 (02) : 205 - 226
  • [5] Convex billiards on convex spheres
    Zhang, Pengfei
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (04): : 793 - 816
  • [6] On the boundary element method for billiards with corners
    Okada, Y
    Shudo, A
    Tasaki, S
    Harayama, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (30): : 6675 - 6688
  • [7] Dirac and Plateau billiards in domains with corners
    Gromov, Misha
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (08): : 1109 - 1156
  • [8] CIRCULAR BILLIARDS AND PARALLEL AXIOM IN CONVEX BILLIARDS
    Tamura, Shinetsu
    Innami, Nobuhiro
    TSUKUBA JOURNAL OF MATHEMATICS, 2009, 33 (01) : 147 - 160
  • [9] Stochastic perturbations of convex billiards
    Markarian, R.
    Rolla, L. T.
    Sidoravicius, V.
    Tal, F. A.
    Vares, M. E.
    NONLINEARITY, 2015, 28 (12) : 4425 - 4434
  • [10] Homoclinic points for convex billiards
    Xia, Zhihong
    Zhang, Pengfei
    NONLINEARITY, 2014, 27 (06) : 1181 - 1192