How to Cut Corners and Get Bounded Convex Curvature

被引:0
|
作者
Mikkel Abrahamsen
Mikkel Thorup
机构
[1] University of Copenhagen,Department of Computer Science
来源
关键词
Bounded curvature; Pocket machining; Circular ray shooting; 68U05; 68W40;
D O I
暂无
中图分类号
学科分类号
摘要
We describe an algorithm for solving an important geometric problem arising in computer-aided manufacturing. When cutting away a region from a solid piece of material—such as steel, wood, ceramics, or plastic—using a rough tool in a milling machine, sharp convex corners of the region cannot be done properly, but have to be left for finer tools that are more expensive to use. We want to determine a toolpath that maximizes the use of the rough tool. In order to formulate the problem in mathematical terms, we introduce the notion of bounded convex curvature. A region of points in the plane Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document} has bounded convex curvature if for any point x∈∂Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \partial Q$$\end{document}, there is a unit disk U and ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document} such that x∈∂U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \partial U$$\end{document} and all points in U within distance ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} from x are in Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document}. This translates to saying that as we traverse the boundary ∂Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial Q$$\end{document} with the interior of Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document} on the left side, then ∂Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial Q$$\end{document} turns to the left with curvature at most 1. There is no bound on the curvature where ∂Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial Q$$\end{document} turns to the right. Given a region of points P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document} in the plane, we are now interested in computing the maximum subset Q⊆P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q\subseteq P$$\end{document} of bounded convex curvature. The difference in the requirement to left- and right-curvature is a natural consequence of different conditions when machining convex and concave areas of Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document}. We devise an algorithm to compute the unique maximum such set Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document}, when the boundary of P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document} consists of n line segments and circular arcs of arbitrary radii. In the general case where P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document} may have holes, the algorithm runs in time O(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2)$$\end{document} and uses O(n) space. If P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document} is simply-connected, we describe a faster O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n\log n)$$\end{document} time algorithm.
引用
收藏
页码:1195 / 1231
页数:36
相关论文
共 50 条
  • [1] How to Cut Corners and Get Bounded Convex Curvature
    Abrahamsen, Mikkel
    Thorup, Mikkel
    DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 69 (04) : 1195 - 1231
  • [2] Convex tours of bounded curvature
    Boissonnat, JD
    Czyzowicz, J
    Devillers, O
    Robert, JM
    Yvinec, M
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1999, 13 (03): : 149 - 159
  • [3] Disks in Curves of Bounded Convex Curvature
    Aamand, Anders
    Abrahamsen, Mikkel
    Thorup, Mikkel
    AMERICAN MATHEMATICAL MONTHLY, 2020, 127 (07): : 579 - 593
  • [4] HOW TO CUT COSTUMES, NOT CORNERS, AT STRATFORD
    BALAY, B
    PERFORMING ARTS & ENTERTAINMENT IN CANADA, 1976, 13 (01): : 42 - 43
  • [5] Smoothness of the convex surface of bounded Gaussian curvature
    Alexandroff, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1942, 36 : 195 - 199
  • [6] Reachability by paths of bounded curvature in a convex polygon
    Ahn, Hee-Kap
    Cheong, Otfried
    Matousek, Jiri
    Vigneron, Antoine
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2012, 45 (1-2): : 21 - 32
  • [7] A Plasticity Principle of Convex Quadrilaterals on a Convex Surface of Bounded Specific Curvature
    Anastasios N. Zachos
    Acta Applicandae Mathematicae, 2014, 129 : 81 - 134
  • [8] A Plasticity Principle of Convex Quadrilaterals on a Convex Surface of Bounded Specific Curvature
    Zachos, Anastasios N.
    ACTA APPLICANDAE MATHEMATICAE, 2014, 129 (01) : 81 - 134
  • [9] Surfaces of Constant Mean Curvature Bounded by Convex Curves
    Rafael Lopez
    Geometriae Dedicata, 1997, 66 : 255 - 263
  • [10] Convex hypersurfaces with bounded first mean curvature measure
    Victor Bangert
    Calculus of Variations and Partial Differential Equations, 1999, 8 : 259 - 278