How to Cut Corners and Get Bounded Convex Curvature

被引:0
|
作者
Mikkel Abrahamsen
Mikkel Thorup
机构
[1] University of Copenhagen,Department of Computer Science
来源
关键词
Bounded curvature; Pocket machining; Circular ray shooting; 68U05; 68W40;
D O I
暂无
中图分类号
学科分类号
摘要
We describe an algorithm for solving an important geometric problem arising in computer-aided manufacturing. When cutting away a region from a solid piece of material—such as steel, wood, ceramics, or plastic—using a rough tool in a milling machine, sharp convex corners of the region cannot be done properly, but have to be left for finer tools that are more expensive to use. We want to determine a toolpath that maximizes the use of the rough tool. In order to formulate the problem in mathematical terms, we introduce the notion of bounded convex curvature. A region of points in the plane Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document} has bounded convex curvature if for any point x∈∂Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \partial Q$$\end{document}, there is a unit disk U and ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document} such that x∈∂U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \partial U$$\end{document} and all points in U within distance ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} from x are in Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document}. This translates to saying that as we traverse the boundary ∂Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial Q$$\end{document} with the interior of Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document} on the left side, then ∂Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial Q$$\end{document} turns to the left with curvature at most 1. There is no bound on the curvature where ∂Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial Q$$\end{document} turns to the right. Given a region of points P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document} in the plane, we are now interested in computing the maximum subset Q⊆P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q\subseteq P$$\end{document} of bounded convex curvature. The difference in the requirement to left- and right-curvature is a natural consequence of different conditions when machining convex and concave areas of Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document}. We devise an algorithm to compute the unique maximum such set Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document}, when the boundary of P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document} consists of n line segments and circular arcs of arbitrary radii. In the general case where P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document} may have holes, the algorithm runs in time O(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2)$$\end{document} and uses O(n) space. If P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document} is simply-connected, we describe a faster O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n\log n)$$\end{document} time algorithm.
引用
收藏
页码:1195 / 1231
页数:36
相关论文
共 50 条
  • [31] When to Cut Corners and When Not to
    Mandrekar, Pratik
    Joseph, Toby
    MATHEMATICAL INTELLIGENCER, 2014, 36 (03): : 70 - 74
  • [32] How to obtain transience from bounded radial mean curvature
    Markvorsen, S
    Palmer, V
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (09) : 3459 - 3479
  • [33] BOUNDED-CURVATURE SHORTEST PATHS THROUGH A SEQUENCE OF POINTS USING CONVEX OPTIMIZATION
    Goaoc, Xavier
    Kim, Hyo-Sil
    Lazard, Sylvain
    SIAM JOURNAL ON COMPUTING, 2013, 42 (02) : 662 - 684
  • [34] Splitting Proximal Algorithms for Convex Optimizations over Metric Spaces with Curvature Bounded Above
    Termkaew, Sakan
    Kumam, Poom
    Chaipunya, Parin
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (02): : 693 - 711
  • [35] Hölder continuity of surfaces with bounded mean curvature at corners where Plateau boundaries meet free boundaries
    Frank Müller
    Calculus of Variations and Partial Differential Equations, 2005, 24 : 283 - 288
  • [36] Isoperimetric inequalities for convex areas with corners
    Dinghas, A
    MATHEMATISCHE ZEITSCHRIFT, 1943, 48 : 428 - 440
  • [37] Bounce law at the corners of convex billiards
    Cabot, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 57 (04) : 597 - 614
  • [38] Polygon simplification by minimizing convex corners
    Bahoo, Yeganeh
    Durocher, Stephane
    Keil, J. Mark
    Mondal, Debajyoti
    Mehrabi, Saeed
    Mehrpour, Sahar
    THEORETICAL COMPUTER SCIENCE, 2019, 791 : 76 - 86
  • [39] Polygon Simplification by Minimizing Convex Corners
    Bahoo, Yeganeh
    Durocher, Stephane
    Keil, J. Mark
    Mehrabi, Saeed
    Mehrpour, Sahar
    Mondal, Debajyoti
    COMPUTING AND COMBINATORICS, COCOON 2016, 2016, 9797 : 547 - 559
  • [40] CUT CORNERS TO SIGNAL LEGITIMATE PRESCRIPTION
    不详
    PATIENT CARE, 1974, 8 (10) : 186 - 186