Dispersion-corrected Moller-Plesset second-order perturbation theory

被引:209
|
作者
Tkatchenko, Alexandre [1 ]
DiStasio, Robert A., Jr. [2 ]
Head-Gordon, Martin [2 ]
Scheffler, Matthias [1 ]
机构
[1] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2009年 / 131卷 / 09期
关键词
electrostatics; hydrogen bonds; intermolecular forces; perturbation theory; potential energy functions; OSCILLATOR-STRENGTH DISTRIBUTIONS; DENSITY-FUNCTIONAL THEORY; ISOTROPIC DIPOLE PROPERTIES; POTENTIAL-ENERGY CURVES; BENZENE DIMER; COUPLED-CLUSTER; COEFFICIENTS; COMPLEXES; SUMS; SPIN;
D O I
10.1063/1.3213194
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We show that the often unsatisfactory performance of Moller-Plesset second-order perturbation theory (MP2) for the dispersion interaction between closed-shell molecules can be rectified by adding a correction Delta C-n/R-n, to its long-range behavior. The dispersion-corrected MP2 (MP2+Delta vdW) results are in excellent agreement with the quantum chemistry "gold standard" [coupled cluster theory with single, double and perturbative triple excitations, CCSD(T)] for a range of systems bounded by hydrogen bonding, electrostatics and dispersion forces. The MP2+Delta vdW method is only mildly dependent on the short-range damping function and consistently outperforms state-of-the-art dispersion-corrected density-functional theory.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] An atomic orbital-based reformulation of energy gradients in second-order Moller-Plesset perturbation theory
    Schweizer, Sabine
    Doser, Bernd
    Ochsenfeld, Christian
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (15):
  • [32] Spin Component-Scaled Second-Order Moller-Plesset Perturbation Theory for Calculating NMR Shieldings
    Maurer, Marina
    Ochsenfeld, Christian
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (01) : 37 - 44
  • [33] Calculation of frequency-dependent first hyperpolarizabilities using the second-order Moller-Plesset perturbation theory
    Kobayashi, T
    Sasagane, K
    Aiga, F
    Yamaguchi, K
    JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (24): : 11720 - 11733
  • [34] The relative energies of polypeptide conformers predicted by linear scaling second-order Moller-Plesset perturbation theory
    Guo Yang
    Li Wei
    Yuan DanDan
    Li ShuHua
    SCIENCE CHINA-CHEMISTRY, 2014, 57 (10) : 1393 - 1398
  • [35] Staggered Mesh Method for Correlation Energy Calculations of Solids: Second-Order Moller-Plesset Perturbation Theory
    Xing, Xin
    Li, Xiaoxu
    Lin, Lin
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (08) : 4733 - 4745
  • [36] Second-order Moller-Plesset perturbation theory for the transcorrelated Hamiltonian applied to solid-state calculations
    Ochi, Masayuki
    Tsuneyuki, Shinji
    CHEMICAL PHYSICS LETTERS, 2015, 621 : 177 - 183
  • [37] Application of second-order Moller-Plesset perturbation theory with resolution-of-identity approximation to periodic systems
    Katouda, Michio
    Nagase, Shigeru
    JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (18):
  • [38] An effective energy gradient expression for divide-and-conquer second-order Moller-Plesset perturbation theory
    Kobayashi, Masato
    Nakai, Hiromi
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (04):
  • [39] Cholesky-decomposed densities in Laplace-based second-order Moller-Plesset perturbation theory
    Zienau, Jan
    Clin, Lucien
    Doser, Bernd
    Ochsenfeld, Christian
    JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (20):
  • [40] A scaled explicitly correlated F12 correction to second-order MOller-Plesset perturbation theory
    Urban, L.
    Thompson, T. H.
    Ochsenfeld, C.
    JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (04):