Dispersion-corrected Moller-Plesset second-order perturbation theory

被引:209
|
作者
Tkatchenko, Alexandre [1 ]
DiStasio, Robert A., Jr. [2 ]
Head-Gordon, Martin [2 ]
Scheffler, Matthias [1 ]
机构
[1] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2009年 / 131卷 / 09期
关键词
electrostatics; hydrogen bonds; intermolecular forces; perturbation theory; potential energy functions; OSCILLATOR-STRENGTH DISTRIBUTIONS; DENSITY-FUNCTIONAL THEORY; ISOTROPIC DIPOLE PROPERTIES; POTENTIAL-ENERGY CURVES; BENZENE DIMER; COUPLED-CLUSTER; COEFFICIENTS; COMPLEXES; SUMS; SPIN;
D O I
10.1063/1.3213194
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We show that the often unsatisfactory performance of Moller-Plesset second-order perturbation theory (MP2) for the dispersion interaction between closed-shell molecules can be rectified by adding a correction Delta C-n/R-n, to its long-range behavior. The dispersion-corrected MP2 (MP2+Delta vdW) results are in excellent agreement with the quantum chemistry "gold standard" [coupled cluster theory with single, double and perturbative triple excitations, CCSD(T)] for a range of systems bounded by hydrogen bonding, electrostatics and dispersion forces. The MP2+Delta vdW method is only mildly dependent on the short-range damping function and consistently outperforms state-of-the-art dispersion-corrected density-functional theory.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] New implementation of second-order Moller-Plesset perturbation theory with an analytic Slater-type geminal
    Ten-no, Seiichiro
    JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01):
  • [42] Communications: Explicitly correlated second-order Moller-Plesset perturbation method for extended systems
    Shiozaki, Toru
    Hirata, So
    JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15):
  • [43] Pair natural orbitals in explicitly correlated second-order moller-plesset theory
    Tew, David P.
    Haettig, Christof
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2013, 113 (03) : 224 - 229
  • [44] Stochastic Formulation of the Resolution of Identity: Application to Second Order Moller-Plesset Perturbation Theory
    Takeshita, Tyler Y.
    de Jong, Wibe A.
    Neuhauser, Daniel
    Baer, Roi
    Rabani, Eran
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (10) : 4605 - 4610
  • [45] Improved third-order Moller-Plesset perturbation theory
    Grimme, S
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2003, 24 (13) : 1529 - 1537
  • [46] Second Order Local Moller-Plesset Perturbation Theory for Periodic Systems: the CRYSCOR Code
    Usvyat, Denis
    Maschio, Lorenzo
    Pisani, Cesare
    Schuetz, Martin
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2010, 224 (3-4): : 441 - 454
  • [47] Second order Moller-Plesset perturbation theory without basis set superposition error
    Mayer, I
    Valiron, P
    JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (09): : 3360 - 3373
  • [48] The analytical gradient of dual-basis resolution-of-the-identity second-order Moller-Plesset perturbation theory
    Distasio, Robert A., Jr.
    Steele, Ryan P.
    Head-Gordon, Martin
    MOLECULAR PHYSICS, 2007, 105 (19-22) : 2731 - 2742
  • [49] Adsorption of Water onto SrTiO3 from Periodic Moller-Plesset Second-Order Perturbation Theory
    Holmstrom, E.
    Foster, A. S.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (12) : 6301 - 6307
  • [50] Analytical energy gradients for local second-order Moller-Plesset perturbation theory using density fitting approximations
    Schütz, M
    Werner, HJ
    Lindh, R
    Manby, FR
    JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (02): : 737 - 750