Cholesky-decomposed densities in Laplace-based second-order Moller-Plesset perturbation theory

被引:51
|
作者
Zienau, Jan [1 ]
Clin, Lucien [1 ]
Doser, Bernd [1 ]
Ochsenfeld, Christian [1 ]
机构
[1] Univ Tubingen, D-72076 Tubingen, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2009年 / 130卷 / 20期
关键词
ab initio calculations; electron correlations; integral equations; Laplace equations; orbital calculations; perturbation theory; ELECTRONIC-STRUCTURE CALCULATIONS; GAUSSIAN-BASIS SETS; MP2; ENERGY; APPROXIMATIONS; INTEGRALS; SYSTEMS; MATRIX;
D O I
10.1063/1.3142592
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Based on our linear-scaling atomic orbital second-order Moller-Plesset perturbation theory (AO-MP2) method [J. Chem. Phys. 130, 064107 (2009)], we explore the use of Cholesky-decomposed pseudodensity (CDD) matrices within the Laplace formulation. Numerically significant contributions are preselected using our multipole-based integral estimates as upper bounds to two-electron integrals so that the 1/R(6) decay behavior of transformed Coulomb-type products is exploited. In addition, we combine our new CDD-MP2 method with the resolution of the identity (RI) approach. Even though the use of RI results in a method that shows a quadratic scaling behavior in the dominant steps, gains of up to one or two orders of magnitude vs. our original AO-MP2 method are observed in particular for larger basis sets.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Efficient Reduced-Scaling Second-Order Moller-Plesset Perturbation Theory with Cholesky-Decomposed Densities and an Attenuated Coulomb Metric
    Glasbrenner, Michael
    Graf, Daniel
    Ochsenfeld, Christian
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (11) : 6856 - 6868
  • [2] Efficient low-scaling computation of NMR shieldings at the second-order Moller-Plesset perturbation theory level with Cholesky-decomposed densities and an attenuated Coulomb metric
    Glasbrenner, Michael
    Vogler, Sigurd
    Ochsenfeld, Christian
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (22):
  • [3] NMR chemical shift computations at second-order Moller-Plesset perturbation theory using gauge-including atomic orbitals and Cholesky-decomposed two-electron integrals
    Burger, Sophia
    Lipparini, Filippo
    Gauss, Juergen
    Stopkowicz, Stella
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (07):
  • [4] Dispersion-corrected Moller-Plesset second-order perturbation theory
    Tkatchenko, Alexandre
    DiStasio, Robert A., Jr.
    Head-Gordon, Martin
    Scheffler, Matthias
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (09):
  • [5] Low-scaling first-order properties within second-order Moller-Plesset perturbation theory using Cholesky decomposed density matrices
    Vogler, Sigurd
    Ludwig, Martin
    Maurer, Marina
    Ochsenfeld, Christian
    JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (02):
  • [6] Stability of Hydrogen Hydrates from Second-Order Moller-Plesset Perturbation Theory
    Kosata, Jan
    Merkl, Padryk
    Teeratchanan, Pattanasak
    Hermann, Andreas
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (18): : 5624 - 5629
  • [7] Analytical energy gradients for local second-order Moller-Plesset perturbation theory
    El Azhary, A
    Rauhut, G
    Pulay, P
    Werner, HJ
    JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (13): : 5185 - 5193
  • [8] Analytical Gradients of the Second-Order Moller-Plesset Energy Using Cholesky Decompositions
    Bostrom, Jonas
    Veryazov, Valera
    Aquilante, Francesco
    Pedersen, Thomas Bondo
    Lindh, Roland
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2014, 114 (05) : 321 - 327
  • [9] Complete basis set limits of local second-order MOller-Plesset perturbation theory
    Jorgensen, Kameron R.
    Ramasesh, Vinay V.
    Hannibal, Sonja
    DeYonker, Nathan J.
    Wilson, Angela K.
    MOLECULAR PHYSICS, 2013, 111 (9-11) : 1178 - 1189
  • [10] Analytical energy gradients in second-order Moller-Plesset perturbation theory for extended systems
    Hirata, S
    Iwata, S
    JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (11): : 4147 - 4155