Cholesky-decomposed densities in Laplace-based second-order Moller-Plesset perturbation theory

被引:51
|
作者
Zienau, Jan [1 ]
Clin, Lucien [1 ]
Doser, Bernd [1 ]
Ochsenfeld, Christian [1 ]
机构
[1] Univ Tubingen, D-72076 Tubingen, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2009年 / 130卷 / 20期
关键词
ab initio calculations; electron correlations; integral equations; Laplace equations; orbital calculations; perturbation theory; ELECTRONIC-STRUCTURE CALCULATIONS; GAUSSIAN-BASIS SETS; MP2; ENERGY; APPROXIMATIONS; INTEGRALS; SYSTEMS; MATRIX;
D O I
10.1063/1.3142592
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Based on our linear-scaling atomic orbital second-order Moller-Plesset perturbation theory (AO-MP2) method [J. Chem. Phys. 130, 064107 (2009)], we explore the use of Cholesky-decomposed pseudodensity (CDD) matrices within the Laplace formulation. Numerically significant contributions are preselected using our multipole-based integral estimates as upper bounds to two-electron integrals so that the 1/R(6) decay behavior of transformed Coulomb-type products is exploited. In addition, we combine our new CDD-MP2 method with the resolution of the identity (RI) approach. Even though the use of RI results in a method that shows a quadratic scaling behavior in the dominant steps, gains of up to one or two orders of magnitude vs. our original AO-MP2 method are observed in particular for larger basis sets.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Calculation of frequency-dependent first hyperpolarizabilities using the second-order Moller-Plesset perturbation theory
    Kobayashi, T
    Sasagane, K
    Aiga, F
    Yamaguchi, K
    JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (24): : 11720 - 11733
  • [42] The relative energies of polypeptide conformers predicted by linear scaling second-order Moller-Plesset perturbation theory
    Guo Yang
    Li Wei
    Yuan DanDan
    Li ShuHua
    SCIENCE CHINA-CHEMISTRY, 2014, 57 (10) : 1393 - 1398
  • [43] Staggered Mesh Method for Correlation Energy Calculations of Solids: Second-Order Moller-Plesset Perturbation Theory
    Xing, Xin
    Li, Xiaoxu
    Lin, Lin
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (08) : 4733 - 4745
  • [44] Variational second-order Moller-Plesset theory based on the Luttinger-Ward functional
    Dahlen, NE
    von Barth, U
    JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (15): : 6826 - 6831
  • [45] Second-order Moller-Plesset perturbation theory for the transcorrelated Hamiltonian applied to solid-state calculations
    Ochi, Masayuki
    Tsuneyuki, Shinji
    CHEMICAL PHYSICS LETTERS, 2015, 621 : 177 - 183
  • [46] Application of second-order Moller-Plesset perturbation theory with resolution-of-identity approximation to periodic systems
    Katouda, Michio
    Nagase, Shigeru
    JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (18):
  • [47] An effective energy gradient expression for divide-and-conquer second-order Moller-Plesset perturbation theory
    Kobayashi, Masato
    Nakai, Hiromi
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (04):
  • [48] Second order Moller-Plesset perturbation theory based upon the fragment molecular orbital method
    Fedorov, DG
    Kitaura, K
    JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (06): : 2483 - 2490
  • [49] Accurate Noncovalent Interactions via Dispersion-Corrected Second-Order Moller-Plesset Perturbation Theory
    Rezac, Jan
    Greenwell, Chandler
    Beran, Gregory J. O.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2018, 14 (09) : 4711 - 4721
  • [50] A scaled explicitly correlated F12 correction to second-order MOller-Plesset perturbation theory
    Urban, L.
    Thompson, T. H.
    Ochsenfeld, C.
    JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (04):