Evaluation of Synthetic Data for Privacy-Preserving Machine Learning

被引:0
|
作者
Hittmeir, Markus [1 ]
Ekelhart, Andreas [1 ]
Mayer, Rudolf [1 ]
机构
[1] SBA Res, Vienna, Austria
来源
ERCIM NEWS | 2020年 / 123期
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The generation of synthetic data is widely considered to be an effective way of ensuring privacy and reducing the risk of disclosing sensitive information in micro-data. We analysed these risks and the utility of synthetic data for machine learning tasks. Our results demonstrate the suitability of this approach for privacy-preserving data publishing.
引用
收藏
页码:30 / 31
页数:2
相关论文
共 50 条
  • [21] An Evaluation of Federated Learning Techniques for Secure and Privacy-Preserving Machine Learning on Medical Datasets
    Korkmaz, Abdulkadir
    Alhonainy, Ahmad
    Rao, Praveen
    2022 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP, AIPR, 2022,
  • [22] Machine learning based privacy-preserving fair data trading in big data market
    Zhao, Yanqi
    Yu, Yong
    Li, Yannan
    Han, Gang
    Du, Xiaojiang
    INFORMATION SCIENCES, 2019, 478 : 449 - 460
  • [23] Privacy-Preserving Synthetic Location Data in the Real World
    Cunningham, Teddy
    Cormode, Graham
    Ferhatosmanoglu, Hakan
    PROCEEDINGS OF 17TH INTERNATIONAL SYMPOSIUM ON SPATIAL AND TEMPORAL DATABASES, SSTD 2021, 2021, : 23 - 33
  • [24] Privacy-Preserving Anomaly Detection Using Synthetic Data
    Mayer, Rudolf
    Hittmeir, Markus
    Ekelhart, Andreas
    DATA AND APPLICATIONS SECURITY AND PRIVACY XXXIV, DBSEC 2020, 2020, 12122 : 195 - 207
  • [25] Synthetic data for privacy-preserving clinical risk prediction
    Qian, Zhaozhi
    Callender, Thomas
    Cebere, Bogdan
    Janes, Sam M.
    Navani, Neal
    van der Schaar, Mihaela
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [26] Privacy-Preserving Synthetic Data Generation for Recommendation Systems
    Liu, Fan
    Cheng, Zhiyong
    Chen, Huilin
    Wei, Yinwei
    Nie, Liqiang
    Kankanhalli, Mohan
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 1379 - 1389
  • [27] Splitting chemical structure data sets for federated privacy-preserving machine learning
    Jaak Simm
    Lina Humbeck
    Adam Zalewski
    Noe Sturm
    Wouter Heyndrickx
    Yves Moreau
    Bernd Beck
    Ansgar Schuffenhauer
    Journal of Cheminformatics, 13
  • [28] Splitting chemical structure data sets for federated privacy-preserving machine learning
    Simm, Jaak
    Humbeck, Lina
    Zalewski, Adam
    Sturm, Noe
    Heyndrickx, Wouter
    Moreau, Yves
    Beck, Bernd
    Schuffenhauer, Ansgar
    JOURNAL OF CHEMINFORMATICS, 2021, 13 (01)
  • [29] Privacy-preserving representation learning for big data
    Zhu, Xiaofeng
    Shang, Shuo
    Kim, Minjeong
    NEUROCOMPUTING, 2020, 406 : 293 - 294
  • [30] Federated Learning for Privacy-Preserving Machine Learning in IoT Networks
    Anitha, G.
    Jegatheesan, A.
    2024 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBER PHYSICAL SYSTEMS AND INTERNET OF THINGS, ICOICI 2024, 2024, : 338 - 342