Evaluation of Synthetic Data for Privacy-Preserving Machine Learning

被引:0
|
作者
Hittmeir, Markus [1 ]
Ekelhart, Andreas [1 ]
Mayer, Rudolf [1 ]
机构
[1] SBA Res, Vienna, Austria
来源
ERCIM NEWS | 2020年 / 123期
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The generation of synthetic data is widely considered to be an effective way of ensuring privacy and reducing the risk of disclosing sensitive information in micro-data. We analysed these risks and the utility of synthetic data for machine learning tasks. Our results demonstrate the suitability of this approach for privacy-preserving data publishing.
引用
收藏
页码:30 / 31
页数:2
相关论文
共 50 条
  • [1] Privacy-Preserving Machine Learning
    Chow, Sherman S. M.
    FRONTIERS IN CYBER SECURITY, 2018, 879 : 3 - 6
  • [2] Privacy-preserving machine learning with multiple data providers
    Li, Ping
    Li, Tong
    Ye, Heng
    Li, Jin
    Chen, Xiaofeng
    Xiang, Yang
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 87 : 341 - 350
  • [3] Privacy-Preserving Machine Learning [Cryptography]
    Kerschbaum, Florian
    Lukas, Nils
    IEEE SECURITY & PRIVACY, 2023, 21 (06) : 90 - 94
  • [4] Survey on Privacy-Preserving Machine Learning
    Liu J.
    Meng X.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2020, 57 (02): : 346 - 362
  • [5] Privacy-preserving Machine Learning Algorithms for Big Data Systems
    Xu, Kaihe
    Yue, Hao
    Guo, Linke
    Guo, Yuanxiong
    Fang, Yuguang
    2015 IEEE 35TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS, 2015, : 318 - 327
  • [6] Privacy-Preserving Synthetic Educational Data Generation
    Vie, Jill-Jenn
    Rigaux, Tomas
    Minn, Sein
    EDUCATING FOR A NEW FUTURE: MAKING SENSE OF TECHNOLOGY-ENHANCED LEARNING ADOPTION, EC-TEL 2022, 2022, 13450 : 393 - 406
  • [7] Privacy-Preserving Synthetic Smart Meters Data
    Del Grosso, Ganesh
    Pichler, Georg
    Piantanida, Pablo
    2021 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT), 2021,
  • [8] Federated Learning: The Pioneering Distributed Machine Learning and Privacy-Preserving Data Technology
    Treleaven, Philip
    Smietanka, Malgorzata
    Pithadia, Hirsh
    COMPUTER, 2022, 55 (04) : 20 - 29
  • [9] AN EXPLORATION OF FEDERATED LEARNING FOR PRIVACY-PRESERVING MACHINE LEARNING
    Kumar, K. Kiran
    Rao, Thalakola Syamsundara
    Vullam, Nagagopiraju
    Vellela, Sai Srinivas
    Jyosthna, B.
    Farjana, Shaik
    Javvadi, Sravanthi
    2024 5TH INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY, ICITIIT 2024, 2024,
  • [10] Privacy-Preserving Machine Learning on Apache Spark
    Brito, Claudia V.
    Ferreira, Pedro G.
    Portela, Bernardo L.
    Oliveira, Rui C.
    Paulo, Joao T.
    IEEE ACCESS, 2023, 11 : 127907 - 127930