Evaluation of Synthetic Data for Privacy-Preserving Machine Learning

被引:0
|
作者
Hittmeir, Markus [1 ]
Ekelhart, Andreas [1 ]
Mayer, Rudolf [1 ]
机构
[1] SBA Res, Vienna, Austria
来源
ERCIM NEWS | 2020年 / 123期
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The generation of synthetic data is widely considered to be an effective way of ensuring privacy and reducing the risk of disclosing sensitive information in micro-data. We analysed these risks and the utility of synthetic data for machine learning tasks. Our results demonstrate the suitability of this approach for privacy-preserving data publishing.
引用
收藏
页码:30 / 31
页数:2
相关论文
共 50 条
  • [11] Privacy-preserving machine learning with tensor networks
    Pozas-Kerstjens, Alejandro
    Hernandez-Santana, Senaida
    Monturiol, Jose Ramon Pareja
    Lopez, Marco Castrillon
    Scarpa, Giannicola
    Gonzalez-Guillen, Carlos E.
    Perez-Garcia, David
    QUANTUM, 2024, 8
  • [12] Privacy-Preserving Machine Learning Based Data Analytics on Edge Devices
    Zhao, Jianxin
    Mortier, Richard
    Crowcroft, Jon
    Wang, Liang
    PROCEEDINGS OF THE 2018 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY (AIES'18), 2018, : 341 - 346
  • [13] Differential Privacy-preserving Distributed Machine Learning
    Wang, Xin
    Ishii, Hideaki
    Du, Linkang
    Cheng, Peng
    Chen, Jiming
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 7339 - 7344
  • [14] Privacy-Preserving Machine Learning: Threats and Solutions
    Al-Rubaie, Mohammad
    Chang, J. Morris
    IEEE SECURITY & PRIVACY, 2019, 17 (02) : 49 - 58
  • [15] A Review of Privacy-Preserving Machine Learning Classification
    Wang, Andy
    Wang, Chen
    Bi, Meng
    Xu, Jian
    CLOUD COMPUTING AND SECURITY, PT IV, 2018, 11066 : 671 - 682
  • [16] Challenges of Privacy-Preserving Machine Learning in IoT
    Zheng, Mengyao
    Xu, Dixing
    Jiang, Linshan
    Gu, Chaojie
    Tan, Rui
    Cheng, Peng
    PROCEEDINGS OF THE 2019 INTERNATIONAL WORKSHOP ON CHALLENGES IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR INTERNET OF THINGS (AICHALLENGEIOT '19), 2019, : 1 - 7
  • [17] Cryptographic Approaches for Privacy-Preserving Machine Learning
    Jiang Han
    Liu Yiran
    Song Xiangfu
    Wang Hao
    Zheng Zhihua
    Xu Qiuliang
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2020, 42 (05) : 1068 - 1078
  • [18] Privacy-preserving quantum machine learning using differential privacy
    Senekane, Makhamisa
    Mafu, Mhlambululi
    Taele, Benedict Molibeli
    2017 IEEE AFRICON, 2017, : 1432 - 1435
  • [19] Balanced Privacy Budget Allocation for Privacy-Preserving Machine Learning
    He, Bingchang
    Miyaji, Atsuko
    INFORMATION SECURITY, ISC 2023, 2023, 14411 : 42 - 56
  • [20] Privacy-friendly machine learning - Part 2: Privacy attacks and privacy-preserving machine learning
    Stock J.
    Petersen T.
    Behrendt C.-A.
    Federrath H.
    Kreutzburg T.
    Informatik Spektrum, 2022, 45 (3) : 137 - 145