Scene Dynamics Estimation for Parameter Adjustment of Gaussian Mixture Models

被引:2
|
作者
Zhang, Rui [1 ,2 ]
Gong, Weiguo [1 ]
Grzeda, Victor [2 ]
Yaworski, Andrew [2 ]
Greenspan, Michael [2 ]
机构
[1] Chongqing Univ, Minist Educ, Key Lab Optoelect Technol & Syst, Chingqing 400044, Peoples R China
[2] Queens Univ, Dept Elect & Comp Engn, Kingston, ON K7L 3N6, Canada
基金
中国国家自然科学基金;
关键词
Background modeling; Gaussian mixture models; parameter adjustment; scene dynamics; video surveillance;
D O I
10.1109/LSP.2014.2326916
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The scene dynamics can provide useful statistical information for adjusting parameters of Gaussian mixture models (GMMs) in video surveillance. The contributions of this paper are twofold. First, an adaptive scene dynamics estimation approach is proposed. Second, we propose a scene-dynamics based method to adjust two types of GMMs' parameters, i.e., the learning rates and number of Gaussian components. For the learning rates, the scene dynamics are integrated into different kinds of pixel-type feedback schemes to control different kinds of learning rates. Experimental results demonstrate that the proposed method can effectively improve the performance of GMMs in surveillance scenes with complex dynamic backgrounds.
引用
收藏
页码:1130 / 1134
页数:5
相关论文
共 50 条
  • [2] Regularized Parameter Estimation in High-Dimensional Gaussian Mixture Models
    Ruan, Lingyan
    Yuan, Ming
    Zou, Hui
    NEURAL COMPUTATION, 2011, 23 (06) : 1605 - 1622
  • [3] The baum-welch algorithm for parameter estimation of gaussian autoregressive mixture models
    Benesch T.
    Journal of Mathematical Sciences, 2001, 105 (6) : 2515 - 2518
  • [4] On Parameter Estimation in Deviated Gaussian Mixture of Experts
    Nguyen, Huy
    Nguyen, Khai
    Ho, Nhat
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [5] Semantic Scene Classification with Generalized Gaussian Mixture Models
    Elguebaly, Tarek
    Bouguila, Nizar
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2015), 2015, 9164 : 159 - 166
  • [6] Parameter Estimation in Gaussian Mixture Models with Malicious Noise, without Balanced Mixing Coefficients
    Xu, Jing
    Marecek, Jakub
    2018 56TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2018, : 446 - 453
  • [7] Mixture models: Validation and parameter estimation
    Oomens, CW
    Huyghe, JM
    Janssen, JD
    COMPUTER METHODS IN BIOMECHANICS & BIOMEDICAL ENGINEERING - 2, 1998, : 511 - 518
  • [8] Direct Importance Estimation with Gaussian Mixture Models
    Yamada, Makoto
    Sugiyama, Masashi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2009, E92D (10) : 2159 - 2162
  • [9] Estimation of multiple networks in Gaussian mixture models
    Gao, Chen
    Zhu, Yunzhang
    Shen, Xiaotong
    Pan, Wei
    ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01): : 1133 - 1154
  • [10] Discriminative mixture weight estimation for large Gaussian mixture models
    Beaufays, Francoise
    Weintraub, Mitchel
    Konig, Yochai
    ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 1999, 1 : 337 - 340