Scene Dynamics Estimation for Parameter Adjustment of Gaussian Mixture Models

被引:2
|
作者
Zhang, Rui [1 ,2 ]
Gong, Weiguo [1 ]
Grzeda, Victor [2 ]
Yaworski, Andrew [2 ]
Greenspan, Michael [2 ]
机构
[1] Chongqing Univ, Minist Educ, Key Lab Optoelect Technol & Syst, Chingqing 400044, Peoples R China
[2] Queens Univ, Dept Elect & Comp Engn, Kingston, ON K7L 3N6, Canada
基金
中国国家自然科学基金;
关键词
Background modeling; Gaussian mixture models; parameter adjustment; scene dynamics; video surveillance;
D O I
10.1109/LSP.2014.2326916
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The scene dynamics can provide useful statistical information for adjusting parameters of Gaussian mixture models (GMMs) in video surveillance. The contributions of this paper are twofold. First, an adaptive scene dynamics estimation approach is proposed. Second, we propose a scene-dynamics based method to adjust two types of GMMs' parameters, i.e., the learning rates and number of Gaussian components. For the learning rates, the scene dynamics are integrated into different kinds of pixel-type feedback schemes to control different kinds of learning rates. Experimental results demonstrate that the proposed method can effectively improve the performance of GMMs in surveillance scenes with complex dynamic backgrounds.
引用
收藏
页码:1130 / 1134
页数:5
相关论文
共 50 条
  • [21] Fast estimation of Gaussian mixture models for image segmentation
    Greggio, Nicola
    Bernardino, Alexandre
    Laschi, Cecilia
    Dario, Paolo
    Santos-Victor, Jose
    MACHINE VISION AND APPLICATIONS, 2012, 23 (04) : 773 - 789
  • [22] Ensemble Gaussian mixture models for probability density estimation
    Michael Glodek
    Martin Schels
    Friedhelm Schwenker
    Computational Statistics, 2013, 28 : 127 - 138
  • [23] RETRACTED: Simulation of Tennis Match Scene Classification Algorithm Based on Adaptive Gaussian Mixture Model Parameter Estimation (Retracted Article)
    Wang, Yuwei
    Wen, Mofei
    COMPLEXITY, 2021, 2021
  • [24] Estimation of signals in colored non gaussian noise based on Gaussian Mixture models
    Pradeepa, R.
    Anand, G. V.
    NSSPW: NONLINEAR STATISTICAL SIGNAL PROCESSING WORKSHOP: CLASSICAL, UNSCENTED AND PARTICLE FILTERING METHODS, 2006, : 17 - 20
  • [25] PARAMETER ESTIMATION IN LINEAR AND QUADRATIC MIXTURE MODELS: A REVIEW
    Sinha, Bikas K.
    Das, Premadhis
    Mandal, Nripes K.
    Pal, Manisha
    PAKISTAN JOURNAL OF STATISTICS, 2010, 26 (01): : 77 - 96
  • [26] Estimation of a scale parameter in mixture models with unknown location
    Petropoulos, C
    Kourouklis, S
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 128 (01) : 191 - 218
  • [27] Parameter Estimation for Mixture Models via Convex Optimization
    Li, Yuanxin
    Chi, Yuejie
    2015 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2015, : 483 - 487
  • [28] PARAMETER ESTIMATION OF GAUSSIAN MIXTURE MODEL BASED ON VARIATIONAL BAYESIAN LEARNING
    Zhao, Linchang
    Shang, Zhaowei
    Qin, Anyong
    Tang, Yuan Yan
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 1, 2018, : 99 - 104
  • [29] Parameter estimation for autoregressive Gaussian-mixture processes: The EMAX algorithm
    Verbout, SM
    Ooi, JM
    Ludwig, JT
    Oppenheim, AV
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (10) : 2744 - 2756
  • [30] Gaussian mixture parameter estimation for cognitive radio and network surveillance applications
    Singh, LN
    Dattatreya, GR
    VTC2005-FALL: 2005 IEEE 62ND VEHICULAR TECHNOLOGY CONFERENCE, 1-4, PROCEEDINGS, 2005, : 1993 - 1997