Scene Dynamics Estimation for Parameter Adjustment of Gaussian Mixture Models

被引:2
|
作者
Zhang, Rui [1 ,2 ]
Gong, Weiguo [1 ]
Grzeda, Victor [2 ]
Yaworski, Andrew [2 ]
Greenspan, Michael [2 ]
机构
[1] Chongqing Univ, Minist Educ, Key Lab Optoelect Technol & Syst, Chingqing 400044, Peoples R China
[2] Queens Univ, Dept Elect & Comp Engn, Kingston, ON K7L 3N6, Canada
基金
中国国家自然科学基金;
关键词
Background modeling; Gaussian mixture models; parameter adjustment; scene dynamics; video surveillance;
D O I
10.1109/LSP.2014.2326916
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The scene dynamics can provide useful statistical information for adjusting parameters of Gaussian mixture models (GMMs) in video surveillance. The contributions of this paper are twofold. First, an adaptive scene dynamics estimation approach is proposed. Second, we propose a scene-dynamics based method to adjust two types of GMMs' parameters, i.e., the learning rates and number of Gaussian components. For the learning rates, the scene dynamics are integrated into different kinds of pixel-type feedback schemes to control different kinds of learning rates. Experimental results demonstrate that the proposed method can effectively improve the performance of GMMs in surveillance scenes with complex dynamic backgrounds.
引用
收藏
页码:1130 / 1134
页数:5
相关论文
共 50 条
  • [31] Parameter estimation for autoregressive Gaussian-mixture processes: The EMAX algorithm
    Verbout, SM
    Ludwig, JT
    Oppenheim, AV
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 3549 - 3552
  • [32] Convex surrogates and stable message-passing: Joint parameter estimation and prediction in coupled Gaussian mixture models
    Wainwright, Martin J.
    2005 IEEE/SP 13TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), VOLS 1 AND 2, 2005, : 373 - 378
  • [33] Video Image Segmentation using Gaussian Mixture Models based on the Differential Evolution-based Parameter Estimation
    Zeng, Zhi-Gao
    Ding, Li-Xin
    Yi, Sheng-Qiu
    Zeng, San-You
    Qiu, Zi-Hua
    ADVANCED MATERIALS AND COMPUTER SCIENCE, PTS 1-3, 2011, 474-476 : 442 - +
  • [34] Channel Estimation based on Gaussian Mixture Models with Structured Covariances
    Fesl, Benedikt
    Joham, Michael
    Hu, Sha
    Koller, Michael
    Turan, Nurettin
    Utschick, Wolfgang
    2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2022, : 533 - 537
  • [35] Nonintrusive speech quality estimation using Gaussian mixture models
    Falk, TH
    Chan, WY
    IEEE SIGNAL PROCESSING LETTERS, 2006, 13 (02) : 108 - 111
  • [36] Estimation of missing LSF parameters using Gaussian Mixture Models
    Martin, R
    Hoelper, C
    Wittke, I
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING, 2001, : 729 - 732
  • [37] ESTIMATION OF THE NEUTRAL FACE SHAPE USING GAUSSIAN MIXTURE MODELS
    Ulukaya, Sezer
    Erdem, Cigdem Eroglu
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 1385 - 1388
  • [38] Empirical Bayes estimation utilizing finite Gaussian Mixture Models
    Orellana, Rafael
    Carvajal, Rodrigo
    Aguero, Juan C.
    2019 IEEE CHILEAN CONFERENCE ON ELECTRICAL, ELECTRONICS ENGINEERING, INFORMATION AND COMMUNICATION TECHNOLOGIES (CHILECON), 2019,
  • [39] Enhanced Recognition of Keystroke Dynamics Using Gaussian Mixture Models
    Ceker, Hayreddin
    Upadhyaya, Shambhu
    2015 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM 2015), 2015, : 1305 - 1310
  • [40] Marginal Likelihoods for Distributed Parameter Estimation of Gaussian Graphical Models
    Meng, Zhaoshi
    Wei, Dennis
    Wiesel, Ami
    Hero, Alfred O., III
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (20) : 5425 - 5438