Parameter Estimation in Gaussian Mixture Models with Malicious Noise, without Balanced Mixing Coefficients

被引:0
|
作者
Xu, Jing [1 ]
Marecek, Jakub [2 ,3 ]
机构
[1] Univ Penn, Appl Math & Computat Sci, Philadelphia, PA 19104 USA
[2] IBM Res Ireland, Dublin, Ireland
[3] Amobee, Redwood City, CA USA
关键词
ROBUST ESTIMATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of estimating the means of components in a noisy 2-Gaussian Mixture Model (2-GMM) without balanced weights, where the noise is of an arbitrary distribution. We present a robust algorithm to estimate the parameters, together with upper bounds on the numbers of samples required for the good estimates, where the bounds are parametrised by the dimension, ratio of the mixing coefficients, the separation of the two Gaussians in terms of Mahalanobis distance, and a condition number of the covariance matrix. In theory, this is the first sample-complexity result for Gaussian mixtures corrupted by adversarial noise. In practice, our algorithm outperforms the vanilla Expectation-Maximisation (EM) algorithm by orders of magnitude in terms of estimation error.
引用
收藏
页码:446 / 453
页数:8
相关论文
共 50 条
  • [2] Scene Dynamics Estimation for Parameter Adjustment of Gaussian Mixture Models
    Zhang, Rui
    Gong, Weiguo
    Grzeda, Victor
    Yaworski, Andrew
    Greenspan, Michael
    IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (09) : 1130 - 1134
  • [3] Estimation of signals in colored non gaussian noise based on Gaussian Mixture models
    Pradeepa, R.
    Anand, G. V.
    NSSPW: NONLINEAR STATISTICAL SIGNAL PROCESSING WORKSHOP: CLASSICAL, UNSCENTED AND PARTICLE FILTERING METHODS, 2006, : 17 - 20
  • [4] Regularized Parameter Estimation in High-Dimensional Gaussian Mixture Models
    Ruan, Lingyan
    Yuan, Ming
    Zou, Hui
    NEURAL COMPUTATION, 2011, 23 (06) : 1605 - 1622
  • [5] Distributed Adaptive LMF Algorithm for Sparse Parameter Estimation in Gaussian Mixture Noise
    Hajiabadi, Mojtaba
    Zamiri-Jafarian, Hossein
    2014 7th International Symposium on Telecommunications (IST), 2014, : 1046 - 1049
  • [6] ESTIMATION OF STATE-SPACE MODELS WITH GAUSSIAN MIXTURE PROCESS NOISE
    Miran, Sina
    Simon, Jonathan Z.
    Fu, Michael C.
    Marcus, Steven I.
    Babadi, Behtash
    2019 IEEE DATA SCIENCE WORKSHOP (DSW), 2019, : 185 - 189
  • [7] Maximum likelihood estimation of Gaussian mixture models without matrix operations
    Nguyen, Hien D.
    McLachlan, Geoffrey J.
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2015, 9 (04) : 371 - 394
  • [8] Maximum likelihood estimation of Gaussian mixture models without matrix operations
    Hien D. Nguyen
    Geoffrey J. McLachlan
    Advances in Data Analysis and Classification, 2015, 9 : 371 - 394
  • [9] The baum-welch algorithm for parameter estimation of gaussian autoregressive mixture models
    Benesch T.
    Journal of Mathematical Sciences, 2001, 105 (6) : 2515 - 2518
  • [10] On Parameter Estimation in Deviated Gaussian Mixture of Experts
    Nguyen, Huy
    Nguyen, Khai
    Ho, Nhat
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238