Parameter Estimation in Gaussian Mixture Models with Malicious Noise, without Balanced Mixing Coefficients

被引:0
|
作者
Xu, Jing [1 ]
Marecek, Jakub [2 ,3 ]
机构
[1] Univ Penn, Appl Math & Computat Sci, Philadelphia, PA 19104 USA
[2] IBM Res Ireland, Dublin, Ireland
[3] Amobee, Redwood City, CA USA
关键词
ROBUST ESTIMATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of estimating the means of components in a noisy 2-Gaussian Mixture Model (2-GMM) without balanced weights, where the noise is of an arbitrary distribution. We present a robust algorithm to estimate the parameters, together with upper bounds on the numbers of samples required for the good estimates, where the bounds are parametrised by the dimension, ratio of the mixing coefficients, the separation of the two Gaussians in terms of Mahalanobis distance, and a condition number of the covariance matrix. In theory, this is the first sample-complexity result for Gaussian mixtures corrupted by adversarial noise. In practice, our algorithm outperforms the vanilla Expectation-Maximisation (EM) algorithm by orders of magnitude in terms of estimation error.
引用
收藏
页码:446 / 453
页数:8
相关论文
共 50 条
  • [31] Comparing Coefficients Across Subpopulations in Gaussian Mixture Regression Models
    Tsai, Shin-Fu
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2019, 24 (04) : 610 - 633
  • [32] DENSITY PARAMETER ESTIMATION FOR ADDITIVE CAUCHY-GAUSSIAN MIXTURE
    Chen, Yuan
    Kuruoglu, Ercan Engin
    So, Hing Cheung
    Huang, Long-Ting
    Wang, Wen-Qin
    2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 197 - 200
  • [33] PARAMETER ESTIMATION OF GAUSSIAN MIXTURE MODEL UTILIZING BOUNDARY DATA
    Omachi, Masako
    Omachi, Shinichiro
    Aso, Hirotomo
    Saito, Tsuneo
    PROCEEDINGS OF THE 38TH INTERNATIONAL CONFERENCE ON COMPUTERS AND INDUSTRIAL ENGINEERING, VOLS 1-3, 2008, : 291 - 297
  • [34] Respiratory parameter estimation in non-invasive ventilation based on generalized Gaussian noise models
    Saatci, Esra
    Akan, Aydin
    SIGNAL PROCESSING, 2010, 90 (02) : 480 - 489
  • [35] Robust L2E Parameter Estimation of Gaussian Mixture Models: Comparison with Expectation Maximization
    Thayasivam, Umashanger
    Kuruwita, Chinthaka
    Ramachandran, Ravi P.
    NEURAL INFORMATION PROCESSING, PT III, 2015, 9491 : 281 - 288
  • [36] Fast estimation of Gaussian mixture models for image segmentation
    Nicola Greggio
    Alexandre Bernardino
    Cecilia Laschi
    Paolo Dario
    José Santos-Victor
    Machine Vision and Applications, 2012, 23 : 773 - 789
  • [37] Multiresolution Gaussian mixture models for visual motion estimation
    Wilson, R
    Calway, A
    2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2001, : 921 - 924
  • [38] Gaussian Mixture Models and its Parameter Estimation to Describe the Distributions of PMU Random Errors in Power Systems
    State Grid Liaoning Electric Power Supply Co. Ltd, Shenyang, China
    不详
    Int. Conf. Power Energy Syst. Eng., CPESE, 1600, (1-6): : 1 - 6
  • [39] Ensemble Gaussian mixture models for probability density estimation
    Glodek, Michael
    Schels, Martin
    Schwenker, Friedhelm
    COMPUTATIONAL STATISTICS, 2013, 28 (01) : 127 - 138
  • [40] Fast estimation of Gaussian mixture models for image segmentation
    Greggio, Nicola
    Bernardino, Alexandre
    Laschi, Cecilia
    Dario, Paolo
    Santos-Victor, Jose
    MACHINE VISION AND APPLICATIONS, 2012, 23 (04) : 773 - 789