Robust L2E Parameter Estimation of Gaussian Mixture Models: Comparison with Expectation Maximization

被引:1
|
作者
Thayasivam, Umashanger [1 ]
Kuruwita, Chinthaka [2 ]
Ramachandran, Ravi P. [1 ]
机构
[1] Rowan Univ, Glassboro, NJ USA
[2] Hamilton Coll, Clinton, NY 13323 USA
来源
关键词
Robust L2E estimation; Gaussian mixture model; Expectation maximization; Unsupervised learning; Big data; MAXIMUM-LIKELIHOOD; DENSITY;
D O I
10.1007/978-3-319-26555-1_32
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The purpose of this paper is to discuss the use of L2E estimation that minimizes integrated square distance as a practical robust estimation tool for unsupervised clustering. Comparisons to the expectation maximization (EM) algorithm are made. The L2E approach for mixture models is particularly useful in the study of big data sets and especially those with a consistent numbers of outliers. The focus is on the comparison of L2E and EM for parameter estimation of Gaussian Mixture Models. Simulation examples show that the L2E approach is more robust than EM when there is noise in the data (particularly outliers) and for the case when the underlying probability density function of the data does not match a mixture of Gaussians.
引用
收藏
页码:281 / 288
页数:8
相关论文
共 50 条
  • [1] Accelerated distributed expectation-maximization algorithms for the parameter estimation in multivariate Gaussian mixture models
    Guo, Guangbao
    Wang, Qian
    Allison, James
    Qian, Guoqi
    APPLIED MATHEMATICAL MODELLING, 2025, 137
  • [2] Parameter Estimation for Gaussian Mixture Processes based on Expectation-Maximization Method
    Xia, Xue
    Zhang, Xuebo
    Chen, Xiaohui
    PROCEEDINGS OF THE 2016 4TH INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS AND INFORMATION TECHNOLOGY APPLICATIONS, 2016, 71 : 519 - 523
  • [3] Genetic algorithm and expectation maximization for parameter estimation of mixture Gaussian model phantom
    Nasab, NM
    Analoui, M
    MEDICAL IMAGING 2002: IMAGE PROCESSING, VOL 1-3, 2002, 4684 : 864 - 871
  • [4] L2E estimation of mixture complexity for count data
    Umashanger, T.
    Sriram, T. N.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (12) : 4243 - 4254
  • [5] Quantum Expectation-Maximization for Gaussian mixture models
    Kerenidis, Iordanis
    Luongo, Alessandro
    Prakash, Anupam
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [6] MPI Implementation of Expectation Maximization Algorithm for Gaussian Mixture Models
    Kapoor, Ayush
    Hemani, Harsh
    Sakthivel, N.
    Chaturvedi, S.
    EMERGING ICT FOR BRIDGING THE FUTURE, VOL 2, 2015, 338 : 517 - 523
  • [7] Maximum Lq-Likelihood Estimation via the Expectation-Maximization Algorithm: A Robust Estimation of Mixture Models
    Qin, Yichen
    Priebe, Carey E.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (503) : 914 - 928
  • [8] Robust L2E Estimation of Transformation for Non-Rigid Registration
    Ma, Jiayi
    Qiu, Weichao
    Zhao, Ji
    Ma, Yong
    Yuille, Alan L.
    Tu, Zhuowen
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (05) : 1115 - 1129
  • [10] Fast Parallel Expectation Maximization for Gaussian Mixture Models on GPUs using CUDA
    Kumar, N. S. L. Phani
    Satoor, Sanjiv
    Buck, Ian
    HPCC: 2009 11TH IEEE INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS, 2009, : 103 - 109