Robust L2E Parameter Estimation of Gaussian Mixture Models: Comparison with Expectation Maximization

被引:1
|
作者
Thayasivam, Umashanger [1 ]
Kuruwita, Chinthaka [2 ]
Ramachandran, Ravi P. [1 ]
机构
[1] Rowan Univ, Glassboro, NJ USA
[2] Hamilton Coll, Clinton, NY 13323 USA
来源
关键词
Robust L2E estimation; Gaussian mixture model; Expectation maximization; Unsupervised learning; Big data; MAXIMUM-LIKELIHOOD; DENSITY;
D O I
10.1007/978-3-319-26555-1_32
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The purpose of this paper is to discuss the use of L2E estimation that minimizes integrated square distance as a practical robust estimation tool for unsupervised clustering. Comparisons to the expectation maximization (EM) algorithm are made. The L2E approach for mixture models is particularly useful in the study of big data sets and especially those with a consistent numbers of outliers. The focus is on the comparison of L2E and EM for parameter estimation of Gaussian Mixture Models. Simulation examples show that the L2E approach is more robust than EM when there is noise in the data (particularly outliers) and for the case when the underlying probability density function of the data does not match a mixture of Gaussians.
引用
收藏
页码:281 / 288
页数:8
相关论文
共 50 条
  • [21] Regularized Parameter Estimation in High-Dimensional Gaussian Mixture Models
    Ruan, Lingyan
    Yuan, Ming
    Zou, Hui
    NEURAL COMPUTATION, 2011, 23 (06) : 1605 - 1622
  • [22] Robust estimation of a global Gaussian mixture by decentralized aggregations of local models
    LINA , Université de Nantes, Nantes, France
    Pigeau, A. (antoine.pigeau@univ-nantes.fr), 2013, IOS Press BV (11):
  • [23] Online expectation-maximization type algorithms for parameter estimation in general state space models
    Andrieu, C
    Doucet, A
    2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL VI, PROCEEDINGS: SIGNAL PROCESSING THEORY AND METHODS, 2003, : 69 - 72
  • [24] Robust Generalized Point Set Registration using Inhomogeneous Hybrid Mixture Models via Expectation Maximization
    Min, Zhe
    Meng, Max Q-H.
    2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 8733 - 8739
  • [25] Robust low tubal rank tensor recovery via L2E criterion
    Song, Zihao
    Xu, Xiangjian
    Lian, Heng
    Zhao, Weihua
    PATTERN RECOGNITION, 2024, 149
  • [26] The baum-welch algorithm for parameter estimation of gaussian autoregressive mixture models
    Benesch T.
    Journal of Mathematical Sciences, 2001, 105 (6) : 2515 - 2518
  • [27] On the performance of L2E estimation in modelling heterogeneous count responses with extreme values
    Lee, Jaejun
    Sriram, T. N.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (03) : 564 - 581
  • [28] Parameter Estimation of Autoregressive-Exogenous and Autoregressive Models Subject to Missing Data Using Expectation Maximization
    Horner, Matthew
    Pakzad, Shamim N.
    Gulgec, Nur Sila
    FRONTIERS IN BUILT ENVIRONMENT, 2019, 5
  • [29] Hyperspectral parameter estimation of elliptically contoured t mixture models using expectation-maximisation
    Farrell, MD
    Mersereau, RM
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (22) : 5071 - 5097
  • [30] Mountainous SAR Image Registration Using Image Simulation and an L2E Robust Estimator
    Zhang, Shuang
    Sui, Lichun
    Zhou, Rongrong
    Xun, Zhangyuan
    Du, Chengyan
    Guo, Xiao
    SUSTAINABILITY, 2022, 14 (15)