Parameter Estimation in Gaussian Mixture Models with Malicious Noise, without Balanced Mixing Coefficients

被引:0
|
作者
Xu, Jing [1 ]
Marecek, Jakub [2 ,3 ]
机构
[1] Univ Penn, Appl Math & Computat Sci, Philadelphia, PA 19104 USA
[2] IBM Res Ireland, Dublin, Ireland
[3] Amobee, Redwood City, CA USA
关键词
ROBUST ESTIMATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of estimating the means of components in a noisy 2-Gaussian Mixture Model (2-GMM) without balanced weights, where the noise is of an arbitrary distribution. We present a robust algorithm to estimate the parameters, together with upper bounds on the numbers of samples required for the good estimates, where the bounds are parametrised by the dimension, ratio of the mixing coefficients, the separation of the two Gaussians in terms of Mahalanobis distance, and a condition number of the covariance matrix. In theory, this is the first sample-complexity result for Gaussian mixtures corrupted by adversarial noise. In practice, our algorithm outperforms the vanilla Expectation-Maximisation (EM) algorithm by orders of magnitude in terms of estimation error.
引用
收藏
页码:446 / 453
页数:8
相关论文
共 50 条
  • [41] Ensemble Gaussian mixture models for probability density estimation
    Michael Glodek
    Martin Schels
    Friedhelm Schwenker
    Computational Statistics, 2013, 28 : 127 - 138
  • [42] Estimation of Achievable Rates in Additive Gaussian Mixture Noise Channels
    Duc-Anh Le
    Vu, Hung V.
    Tran, Nghi H.
    Gursoy, Mustafa Cenk
    Tho Le-Ngoc
    2016 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2016, : 856 - 861
  • [43] Gaussian mixture PHD filter based on noise covariance estimation
    Liang L.
    Jing Z.
    Dong P.
    Li M.
    Jing, Zhongliang (zljing@sjtu.edu.cn), 1600, Shanghai Jiaotong University (50): : 1355 - 1361
  • [44] Robust estimation of mixing measures in finite mixture models
    Nhat Ho
    XuanLong Nguyen
    Ritov, Ya'acov
    BERNOULLI, 2020, 26 (02) : 828 - 857
  • [45] Directional mixture models and optimal estimation of the mixing density
    Kim, PT
    Koo, JY
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2000, 28 (02): : 383 - 398
  • [46] Speech enhancement using Maximum A-Posteriori and Gaussian Mixture Models for speech and noise Periodogram estimation
    Chehrehsa, Sarang
    Moir, Tom James
    COMPUTER SPEECH AND LANGUAGE, 2016, 36 : 58 - 71
  • [47] On parameter estimation using nonparametric noise models
    Mahata, Kaushik
    Pintelon, Rik
    Schoukens, Johan
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (10) : 1602 - 1612
  • [48] PARTICLE FLOW PARTICLE FILTER FOR GAUSSIAN MIXTURE NOISE MODELS
    Pal, Soumyasundar
    Coates, Mark
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 4249 - 4253
  • [49] Parameter estimation: known vector signals in unknown Gaussian noise
    Dattatreya, GR
    Fang, XR
    PATTERN RECOGNITION, 2003, 36 (10) : 2317 - 2332
  • [50] The influence of non-Gaussian noise on the accuracy of parameter estimation
    Li, Xue-Lian
    Li, Jun-Gang
    Wang, Yuan-Mei
    PHYSICS LETTERS A, 2017, 381 (04) : 216 - 220