Uniformly Convergent Iterative Methods for Discontinuous Galerkin Discretizations

被引:34
|
作者
Ayuso de Dios, Blanca [2 ]
Zikatanov, Ludmil [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
基金
美国国家科学基金会;
关键词
Discontinuous Galerkin finite element methods; Subspace correction methods; Interior Penalty methods; Iterative methods for non-symmetric problems; FINITE-ELEMENT METHODS; INTERIOR PENALTY; SCHWARZ PRECONDITIONERS; ELLIPTIC PROBLEMS; APPROXIMATIONS; DECOMPOSITION; ALGORITHMS;
D O I
10.1007/s10915-009-9293-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present iterative and preconditioning techniques for the solution of the linear systems resulting from several discontinuous Galerkin (DG) Interior Penalty (IP) discretizations of elliptic problems. We analyze the convergence properties of these algorithms for both symmetric and non-symmetric IP schemes. The iterative methods are based on a "natural" decomposition of the first order DG finite element space as a direct sum of the Crouzeix-Raviart non-conforming finite element space and a subspace that contains functions discontinuous at interior faces. We also present numerical examples confirming the theoretical results.
引用
收藏
页码:4 / 36
页数:33
相关论文
共 50 条
  • [31] Galerkin and discontinuous Galerkin spectral/hp methods
    Warburton, TC
    Lomtev, I
    Du, Y
    Sherwin, SJ
    Karniadakis, GE
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 175 (3-4) : 343 - 359
  • [32] A SUBSPACE CORRECTION METHOD FOR DISCONTINUOUS GALERKIN DISCRETIZATIONS OF LINEAR ELASTICITY EQUATIONS
    Ayuso de Dios, Blanca
    Georgiev, Ivan
    Kraus, Johannes
    Zikatanov, Ludmil
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (05): : 1315 - 1333
  • [33] The development of discontinuous Galerkin methods
    Cockburn, B
    Karniadakis, GE
    Shu, CW
    DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 3 - 50
  • [34] Discontinuous Galerkin methods in nanophotonics
    Busch, Kurt
    Koenig, Michael
    Niegemann, Jens
    LASER & PHOTONICS REVIEWS, 2011, 5 (06) : 773 - 809
  • [35] Discontinuous Galerkin methods for flows
    Hoskin, Dominique S.
    Van Heyningen, R. Loek
    Nguyen, Ngoc Cuong
    Vila-Perez, Jordi
    Harris, Wesley L.
    Peraire, Jaime
    PROGRESS IN AEROSPACE SCIENCES, 2024, 146
  • [36] The Hybridizable Discontinuous Galerkin Methods
    Cockburn, Bernardo
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL IV: INVITED LECTURES, 2010, : 2749 - 2775
  • [37] A UNIFIED ANALYSIS OF BALANCING DOMAIN DECOMPOSITION BY CONSTRAINTS FOR DISCONTINUOUS GALERKIN DISCRETIZATIONS
    Diosady, Laslo T.
    Darmofal, David L.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (03) : 1695 - 1712
  • [38] Discontinuous Galerkin discretizations and analysis for the Cohen-Monk PML model
    Huang, Yunqing
    Li, Jichun
    Li, Chanjie
    Qu, Kai
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 407
  • [39] MULTIGRID ALGORITHMS FOR hp-DISCONTINUOUS GALERKIN DISCRETIZATIONS OF ELLIPTIC PROBLEMS
    Antonietti, Paola F.
    Sarti, Marco
    Verani, Marco
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) : 598 - 618
  • [40] A Simple and Robust Shock-Capturing Approach for Discontinuous Galerkin Discretizations
    Choi, Jae Hwan
    Alonso, Juan J.
    van der Weide, Edwin
    ENERGIES, 2019, 12 (14):