Uniformly Convergent Iterative Methods for Discontinuous Galerkin Discretizations

被引:34
|
作者
Ayuso de Dios, Blanca [2 ]
Zikatanov, Ludmil [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
基金
美国国家科学基金会;
关键词
Discontinuous Galerkin finite element methods; Subspace correction methods; Interior Penalty methods; Iterative methods for non-symmetric problems; FINITE-ELEMENT METHODS; INTERIOR PENALTY; SCHWARZ PRECONDITIONERS; ELLIPTIC PROBLEMS; APPROXIMATIONS; DECOMPOSITION; ALGORITHMS;
D O I
10.1007/s10915-009-9293-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present iterative and preconditioning techniques for the solution of the linear systems resulting from several discontinuous Galerkin (DG) Interior Penalty (IP) discretizations of elliptic problems. We analyze the convergence properties of these algorithms for both symmetric and non-symmetric IP schemes. The iterative methods are based on a "natural" decomposition of the first order DG finite element space as a direct sum of the Crouzeix-Raviart non-conforming finite element space and a subspace that contains functions discontinuous at interior faces. We also present numerical examples confirming the theoretical results.
引用
收藏
页码:4 / 36
页数:33
相关论文
共 50 条
  • [21] IMPLICIT RUNGE-KUTTA METHODS AND DISCONTINUOUS GALERKIN DISCRETIZATIONS FOR LINEAR MAXWELL'S EQUATIONS
    Hochbruck, Marlis
    Pazur, Tomislav
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) : 485 - 507
  • [22] Optimal Strong-Stability-Preserving Runge–Kutta Time Discretizations for Discontinuous Galerkin Methods
    Ethan J. Kubatko
    Benjamin A. Yeager
    David I. Ketcheson
    Journal of Scientific Computing, 2014, 60 : 313 - 344
  • [23] On discontinuous Galerkin methods
    Zienkiewicz, OC
    Taylor, RL
    Sherwin, SJ
    Peiró, J
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 58 (08) : 1119 - 1148
  • [24] On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations
    Bassi, F.
    Botti, L.
    Colombo, A.
    Di Pietro, D. A.
    Tesini, P.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (01) : 45 - 65
  • [25] Algebraic multigrid for discontinuous Galerkin discretizations of heterogeneous elliptic problems
    Bastian, Peter
    Blatt, Markus
    Scheichl, Robert
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2012, 19 (02) : 367 - 388
  • [26] ANALYSIS OF DUAL CONSISTENCY FOR DISCONTINUOUS GALERKIN DISCRETIZATIONS OF SOURCE TERMS
    Oliver, Todd A.
    Darmofal, David L.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (05) : 3507 - 3525
  • [27] A uniformly convergent continuous-discontinuous Galerkin method for singularly perturbed problems of convection-diffusion type
    Zhu, Peng
    Xie, Ziqing
    Zhou, Shuzi
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (09) : 4781 - 4790
  • [28] DISCONTINUOUS GALERKIN DISCRETIZATIONS OF OPTIMIZED SCHWARZ METHODS FOR SOLVING THE TIME-HARMONIC MAXWELL'S EQUATIONS
    El Bouajaji, Mohamed
    Dolean, Victorita
    Gander, Martin J.
    Lanteri, Stephane
    Perrussel, Ronan
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2015, 44 : 572 - 592
  • [29] Discontinuous Galerkin methods and fast iterative solvers for the numerical solution of compressible flow
    Prill, Florian
    DLR Deutsches Zentrum fur Luft- und Raumfahrt e.V. - Forschungsberichte, 2010, (17): : 1 - 279
  • [30] Optimal Strong-Stability-Preserving Runge-Kutta Time Discretizations for Discontinuous Galerkin Methods
    Kubatko, Ethan J.
    Yeager, Benjamin A.
    Ketcheson, David I.
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 60 (02) : 313 - 344