Discontinuous Galerkin discretizations and analysis for the Cohen-Monk PML model

被引:3
|
作者
Huang, Yunqing [1 ]
Li, Jichun [2 ]
Li, Chanjie [3 ]
Qu, Kai [3 ]
机构
[1] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan, Peoples R China
[2] Univ Nevada Las Vegas, Dept Math Sci, Las Vegas, NV 89154 USA
[3] Dalian Maritime Univ, Coll Sci, Dalian, Peoples R China
关键词
Maxwell's equations; Perfectly Matched Layer; Discontinuous Galerkin method; TIME-DOMAIN METHOD; MAXWELLS EQUATIONS; WAVE-PROPAGATION; ELEMENT-METHOD; SCHEMES; LAYERS;
D O I
10.1016/j.cam.2021.114031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the two-dimensional (2-D) perfectly matched layer (PML) models reformulated from the 3-D PML model originally developed by Cohen and Monk in 1999. We propose the discontinuous Galerkin methods for solving both 2-D TMz and TEz models. We establish the proofs of the stability and error estimate for the proposed schemes. Finally, numerical results are presented to demonstrate the accuracy and performance of our method. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Development and analysis of a new finite element method for the Cohen-Monk PML model
    Chen, Meng
    Huang, Yunqing
    Li, Jichun
    NUMERISCHE MATHEMATIK, 2021, 147 (01) : 127 - 155
  • [2] Adjoint consistency analysis of discontinuous Galerkin discretizations
    Hartmann, Ralf
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (06) : 2671 - 2696
  • [3] Development and analysis of a new finite element method for the Cohen–Monk PML model
    Meng Chen
    Yunqing Huang
    Jichun Li
    Numerische Mathematik, 2021, 147 : 127 - 155
  • [4] ANALYSIS OF DUAL CONSISTENCY FOR DISCONTINUOUS GALERKIN DISCRETIZATIONS OF SOURCE TERMS
    Oliver, Todd A.
    Darmofal, David L.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (05) : 3507 - 3525
  • [5] Preconditioning methods for local discontinuous Galerkin discretizations
    Kanschat, G
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (03): : 815 - 831
  • [6] A UNIFIED ANALYSIS OF BALANCING DOMAIN DECOMPOSITION BY CONSTRAINTS FOR DISCONTINUOUS GALERKIN DISCRETIZATIONS
    Diosady, Laslo T.
    Darmofal, David L.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (03) : 1695 - 1712
  • [7] Analysis of bddc algorithms for stokes problems with hybridizable discontinuous galerkin discretizations
    TU, XUEMIN
    WANG, BIN
    ZHANG, JINJIN
    Electronic Transactions on Numerical Analysis, 2020, 52 : 553 - 570
  • [8] ANALYSIS OF BDDC ALGORITHMS FOR STOKES PROBLEMS WITH HYBRIDIZABLE DISCONTINUOUS GALERKIN DISCRETIZATIONS
    Tu, Xuemin
    Wang, Bin
    Zhang, Jinjin
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2020, 52 : 553 - 570
  • [9] PML in Discontinuous Galerkin Time Domain Methods
    Stylianos, Dosopoulos
    Rawat, Vineet
    Lee, Jin-Fa
    2009 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM AND USNC/URSI NATIONAL RADIO SCIENCE MEETING, VOLS 1-6, 2009, : 3023 - 3026
  • [10] Analysis of an a posteriori error estimator for the transport equation with SN and discontinuous Galerkin discretizations
    Fournier, D.
    Le Tellier, R.
    Suteau, C.
    ANNALS OF NUCLEAR ENERGY, 2011, 38 (2-3) : 221 - 231