Local super antimagic total face coloring of planar graphs

被引:0
|
作者
Nisviasari, R. [1 ,3 ]
Dafik [1 ,4 ]
Maryati, T. K. [2 ]
Agustin, I. H. [1 ,3 ]
Kurniawati, E. Y. [1 ,3 ]
机构
[1] Univ Jember, CGANT, Jember Regency, Indonesia
[2] Univ Islam Negeri Syarif Hidayatullah Jakarta, Math Edu Dept, South Tangerang, Indonesia
[3] Univ Jember, Math Dept, Jember Regency, Indonesia
[4] Univ Jember, Math Edu Dept, Jember Regency, Indonesia
关键词
D O I
10.1088/1755-1315/243/1/012117
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
We using graph G = (V (G),E(G), F(G)) be a nontrivial, finite, connected graph, and a g bijective function mapping total labeling of graph to natural number start form 1 until the sum of vertices, edge, and faces. The sum of vertices, edges, and faces labels in a face f is called the weight of the face f is an element of F(G). If any adjacent two faces f(1) and f(2) have different weights w(f(1)) not equal w(f(2)) for f(1), f(2) is an element of F(G), then g is called a labeling of local antimagic total face. We call labeling of local antimagic total face is super if we add vertices label start from 1 until the sum of vertices, edges label start from the sum of vertices plus 1 until the sum of vertices and edges, and faces label start form the sum of vertices and edges plus one untul the sum of vertices, edges, and faces. The local super antimagic total face labeling that induces a proper faces coloring of G where the faces f is assigned by the color w(f) is called local super antimagic total face coloring. The minimum number of colors in local super antimagic total face coloring is local antimagic total face chromatic number and denoted by gamma(latf) (G). In this paper, we used some planar graph such as wheel graph (W-n), jahangir graph (J(2, n)), ladder graph (L-n), and circular ladder graph (CLn). Our results attained the lower bound of local super antimagic total face chromatic number.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Local antimagic vertex dynamic coloring of some graphs family
    Wardani, P. L.
    Dafik
    Kristiana, A. I.
    Agustin, I. H.
    Alfarisi, R.
    FIRST INTERNATIONAL CONFERENCE ON ENVIRONMENTAL GEOGRAPHY AND GEOGRAPHY EDUCATION (ICEGE), 2019, 243
  • [22] On the local vertex antimagic total coloring of some families tree
    Putri, Desi Febriani
    Dafik
    Agustin, Ika Hesti
    Alfarisi, Ridho
    1ST INTERNATIONAL CONFERENCE OF COMBINATORICS, GRAPH THEORY, AND NETWORK TOPOLOGY, 2018, 1008
  • [23] On Super Edge-Antimagic Total Labeling of Toeplitz Graphs
    Baca, Martin
    Bashir, Yasir
    Nadeem, Muhammad Faisal
    Shabbir, Ayesha
    MATHEMATICS IN THE 21ST CENTURY, 2015, 98 : 1 - 10
  • [24] Super (a, d)-edge antimagic total labelings of friendship graphs
    Arumugam, S.
    Nalliah, M.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2012, 53 : 237 - 243
  • [25] Super-vertex-antimagic total labelings of disconnected graphs
    Ali, Gohar
    Baca, Martin
    Lin, Yuqing
    Semanicova-Fenovcikova, Andrea
    DISCRETE MATHEMATICS, 2009, 309 (20) : 6048 - 6054
  • [26] A note on the minimum total coloring of planar graphs
    Wang, Hui Juan
    Luo, Zhao Yang
    Liu, Bin
    Gu, Yan
    Gao, Hong Wei
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (08) : 967 - 974
  • [27] Total Coloring of Dumbbell Maximal Planar Graphs
    Zhou, Yangyang
    Zhao, Dongyang
    Ma, Mingyuan
    Xu, Jin
    MATHEMATICS, 2022, 10 (06)
  • [28] Total coloring of recursive maximal planar graphs
    Zhou, Yangyang
    Zhao, Dongyang
    Ma, Mingyuan
    Xu, Jin
    THEORETICAL COMPUTER SCIENCE, 2022, 909 : 12 - 18
  • [29] A Note on the Minimum Total Coloring of Planar Graphs
    Hui Juan WANG
    Zhao Yang LUO
    Bin LIU
    Yan GU
    Hong Wei GAO
    Acta Mathematica Sinica,English Series, 2016, (08) : 967 - 974
  • [30] A note on the minimum total coloring of planar graphs
    Hui Juan Wang
    Zhao Yang Luo
    Bin Liu
    Yan Gu
    Hong Wei Gao
    Acta Mathematica Sinica, English Series, 2016, 32 : 967 - 974