Local super antimagic total face coloring of planar graphs

被引:0
|
作者
Nisviasari, R. [1 ,3 ]
Dafik [1 ,4 ]
Maryati, T. K. [2 ]
Agustin, I. H. [1 ,3 ]
Kurniawati, E. Y. [1 ,3 ]
机构
[1] Univ Jember, CGANT, Jember Regency, Indonesia
[2] Univ Islam Negeri Syarif Hidayatullah Jakarta, Math Edu Dept, South Tangerang, Indonesia
[3] Univ Jember, Math Dept, Jember Regency, Indonesia
[4] Univ Jember, Math Edu Dept, Jember Regency, Indonesia
关键词
D O I
10.1088/1755-1315/243/1/012117
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
We using graph G = (V (G),E(G), F(G)) be a nontrivial, finite, connected graph, and a g bijective function mapping total labeling of graph to natural number start form 1 until the sum of vertices, edge, and faces. The sum of vertices, edges, and faces labels in a face f is called the weight of the face f is an element of F(G). If any adjacent two faces f(1) and f(2) have different weights w(f(1)) not equal w(f(2)) for f(1), f(2) is an element of F(G), then g is called a labeling of local antimagic total face. We call labeling of local antimagic total face is super if we add vertices label start from 1 until the sum of vertices, edges label start from the sum of vertices plus 1 until the sum of vertices and edges, and faces label start form the sum of vertices and edges plus one untul the sum of vertices, edges, and faces. The local super antimagic total face labeling that induces a proper faces coloring of G where the faces f is assigned by the color w(f) is called local super antimagic total face coloring. The minimum number of colors in local super antimagic total face coloring is local antimagic total face chromatic number and denoted by gamma(latf) (G). In this paper, we used some planar graph such as wheel graph (W-n), jahangir graph (J(2, n)), ladder graph (L-n), and circular ladder graph (CLn). Our results attained the lower bound of local super antimagic total face chromatic number.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A Note on the Minimum Total Coloring of Planar Graphs
    Hui Juan WANG
    Zhao Yang LUO
    Bin LIU
    Yan GU
    Hong Wei GAO
    ActaMathematicaSinica, 2016, 32 (08) : 967 - 974
  • [32] ON LOCAL ANTIMAGIC TOTAL LABELING OF COMPLETE GRAPHS AMALGAMATION
    Lau, Gee-Choon
    Shiu, Wai Chee
    OPUSCULA MATHEMATICA, 2023, 43 (03) : 429 - 453
  • [33] Vertex-Edge-Face Coloring of Planar Graphs
    Sohaee, Nassim
    COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING, VOL 2: ADVANCES IN COMPUTATIONAL SCIENCE, 2009, 1148 : 881 - 883
  • [34] ON SUPER (a, d)-EDGE ANTIMAGIC TOTAL LABELING OF CERTAIN FAMILIES OF GRAPHS
    Pushpam, P. Roushini Leely
    Saibulla, A.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (03) : 535 - 543
  • [35] On the super (α, d)-H-antimagic total labelings of three graphs
    Zhu, Dongxu
    Liang, Zhihe
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2023, 44 (02): : 195 - 205
  • [36] On super (a, 1)-edge-antimagic total labelings of regular graphs
    Baca, Martin
    Kovar, Petr
    Semanicova-Fenovcikova, Andrea
    Shafiq, Muhammad Kashif
    DISCRETE MATHEMATICS, 2010, 310 (09) : 1408 - 1412
  • [37] Local Antimagic Vertex Coloring of a Graph
    S. Arumugam
    K. Premalatha
    Martin Bača
    Andrea Semaničová-Feňovčíková
    Graphs and Combinatorics, 2017, 33 : 275 - 285
  • [38] Local Antimagic Vertex Coloring of a Graph
    Arumugam, S.
    Premalatha, K.
    Baa, Martin
    Semanicova-Fenovcikova, Andrea
    GRAPHS AND COMBINATORICS, 2017, 33 (02) : 275 - 285
  • [39] ON SUPER (a, 2)-EDGE-ANTIMAGIC TOTAL LABELING OF DISCONNECTED GRAPHS
    Baca, Martin
    Muntaner-Batle, Francesc Antoni
    Semanicova-Fenovcikova, Andrea
    Shafiq, Muhammad Kashif
    ARS COMBINATORIA, 2014, 113 : 129 - 137
  • [40] On super (a, d)-edge-antimagic total labeling of disconnected graphs
    Dafik
    Miller, Mirka
    Ryan, Joe
    Baca, Martin
    DISCRETE MATHEMATICS, 2009, 309 (15) : 4909 - 4915