A note on the minimum total coloring of planar graphs

被引:2
|
作者
Wang, Hui Juan [1 ]
Luo, Zhao Yang [2 ]
Liu, Bin [3 ]
Gu, Yan [1 ]
Gao, Hong Wei [1 ]
机构
[1] Qingdao Univ, Coll Math, Qingdao 266071, Peoples R China
[2] Changji Univ, Dept Math, Changji 831100, Peoples R China
[3] Ocean Univ China, Dept Math, Qingdao 266100, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Planar graph; total coloring; cycle; 5-CYCLES;
D O I
10.1007/s10114-016-5427-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Graph coloring is an important tool in the study of optimization, computer science, network design, e.g., file transferring in a computer network, pattern matching, computation of Hessians matrix and so on. In this paper, we consider one important coloring, vertex coloring of a total graph, which is also called total coloring. We consider a planar graph G with maximum degree Delta(G) a parts per thousand yen 8, and proved that if G contains no adjacent i, j-cycles with two chords for some i, j a {5, 6, 7}, then G is total-(Delta + 1)-colorable.
引用
收藏
页码:967 / 974
页数:8
相关论文
共 50 条
  • [1] A Note on the Minimum Total Coloring of Planar Graphs
    Hui Juan WANG
    Zhao Yang LUO
    Bin LIU
    Yan GU
    Hong Wei GAO
    Acta Mathematica Sinica,English Series, 2016, (08) : 967 - 974
  • [2] A note on the minimum total coloring of planar graphs
    Hui Juan Wang
    Zhao Yang Luo
    Bin Liu
    Yan Gu
    Hong Wei Gao
    Acta Mathematica Sinica, English Series, 2016, 32 : 967 - 974
  • [3] A Note on the Minimum Total Coloring of Planar Graphs
    Hui Juan WANG
    Zhao Yang LUO
    Bin LIU
    Yan GU
    Hong Wei GAO
    ActaMathematicaSinica, 2016, 32 (08) : 967 - 974
  • [4] Minimum total coloring of planar graphs with maximum degree 8
    Liting Wang
    Huijuan Wang
    Weili Wu
    Journal of Combinatorial Optimization, 2023, 45
  • [5] Minimum total coloring of planar graphs with maximum degree 8
    Wang, Liting
    Wang, Huijuan
    Wu, Weili
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2023, 45 (02)
  • [6] A note on the neighbor sum distinguishing total coloring of planar graphs
    Song, Hong Jie
    Pan, Wen Hua
    Gong, Xiang Nan
    Xu, Chang Qing
    THEORETICAL COMPUTER SCIENCE, 2016, 640 : 125 - 129
  • [7] ON THE TOTAL COLORING OF PLANAR GRAPHS
    BORODIN, OV
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1989, 394 : 180 - 185
  • [8] NOTE ON ROBUST COLORING OF PLANAR GRAPHS
    Kardos, Frantisek
    Luzar, Borut
    Sotak, Roman
    OPUSCULA MATHEMATICA, 2025, 45 (01) : 103 - 111
  • [9] Minimum total coloring of planar graph
    Huijuan Wang
    Lidong Wu
    Weili Wu
    Panos M. Pardalos
    Jianliang Wu
    Journal of Global Optimization, 2014, 60 : 777 - 791
  • [10] Minimum total coloring of planar graph
    Wang, Huijuan
    Wu, Lidong
    Wu, Weili
    Pardalos, Panos M.
    Wu, Jianliang
    JOURNAL OF GLOBAL OPTIMIZATION, 2014, 60 (04) : 777 - 791