Fractal Brownian motion and polymers in external fields

被引:6
|
作者
Washington, GE
机构
[1] Chemistry Department, United States Military Academy at West Point, West Point
来源
JOURNAL OF CHEMICAL PHYSICS | 1996年 / 105卷 / 20期
关键词
D O I
10.1063/1.472760
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer behavior in external fields is modeled using fractal Brownian motion. The chain dimensions of polymer chains with and without excluded volume show a contour length dependence of N-v where v = h - 1. Chains with excluded volume have h = 3/5, chains without excluded volume, Gaussian chains have h = 1/2, and for chains in the collapsed state h = 1/3. This nonphysical result points to the distinction between fractals as models of the trajectory or path of a polymer that are self-similar on all length scales and real polymers that possess a lower and upper limit for self-similarity.
引用
收藏
页码:9324 / 9333
页数:10
相关论文
共 50 条
  • [31] FRACTAL DIMENSIONALITY OF BROWNIAN-MOTION IN 2 DIMENSIONS
    KALIA, RK
    DELEEUW, SW
    VASHISHTA, P
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (28): : L905 - L908
  • [32] An Iterative Algorithm of Estimating the Parameters of the Fractal Brownian Motion
    Bondarenko, V. V.
    JOURNAL OF AUTOMATION AND INFORMATION SCIENCES, 2012, 44 (07) : 62 - 68
  • [33] Application of the Fractal Brownian Motion to the Athens Stock Exchange
    Leventides, John
    Melas, Evangelos
    Poulios, Costas
    Livada, Maria
    Poulios, Nick C.
    Boufounou, Paraskevi
    FRACTAL AND FRACTIONAL, 2024, 8 (08)
  • [34] Multifractality of Brownian motion near absorbing polymers
    von Ferber, C
    Holovatch, Y
    PHYSICAL REVIEW E, 1999, 59 (06): : 6914 - 6923
  • [35] Brownian motion of single molecules in electric fields
    Rigler, R
    ELECTROPHORESIS, 2002, 23 (05) : 805 - 808
  • [36] EQUATIONS OF MOTION IN EXTERNAL FIELDS
    KRASNIKOV, VA
    THEORETICAL AND MATHEMATICAL PHYSICS, 1979, 39 (02) : 462 - 466
  • [37] ELECTRON MOTION IN EXTERNAL FIELDS
    ANTONCIK, E
    CESKOSLOVENSKY CASOPIS PRO FYSIKU SEKCE A, 1968, 18 (02): : 149 - &
  • [38] The Fractal Dimensions of the Level Sets of the Generalized Iterated Brownian Motion
    Tong, Chang-qing
    Lin, Zheng-yan
    Zheng, Jing
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (03): : 597 - 602
  • [39] Fractal nature of the functional laws of logarithm of a fractional Brownian motion
    Wang, WS
    STOCHASTIC ANALYSIS AND APPLICATIONS, VOL 3, 2003, : 203 - 211
  • [40] The fractal dimensions of the level sets of the generalized iterated Brownian motion
    Chang-qing Tong
    Zheng-yan Lin
    Jing Zheng
    Acta Mathematicae Applicatae Sinica, English Series, 2013, 29 : 597 - 602