Fractal Brownian motion and polymers in external fields

被引:6
|
作者
Washington, GE
机构
[1] Chemistry Department, United States Military Academy at West Point, West Point
来源
JOURNAL OF CHEMICAL PHYSICS | 1996年 / 105卷 / 20期
关键词
D O I
10.1063/1.472760
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer behavior in external fields is modeled using fractal Brownian motion. The chain dimensions of polymer chains with and without excluded volume show a contour length dependence of N-v where v = h - 1. Chains with excluded volume have h = 3/5, chains without excluded volume, Gaussian chains have h = 1/2, and for chains in the collapsed state h = 1/3. This nonphysical result points to the distinction between fractals as models of the trajectory or path of a polymer that are self-similar on all length scales and real polymers that possess a lower and upper limit for self-similarity.
引用
收藏
页码:9324 / 9333
页数:10
相关论文
共 50 条
  • [21] Visualization of Wavelet Spectra of Fractal Brownian Motion
    Moskalev, P. V.
    TECHNICAL PHYSICS, 2008, 53 (10) : 1261 - 1266
  • [22] Nonlinear filtration for processes with fractal Brownian motion
    Kleptsyna, M.L.
    Kloeden, P.E.
    An, V.V.
    Problemy Peredachi Informatsii, 1998, 54 (55): : 65 - 76
  • [23] Visualization of wavelet spectra of fractal Brownian motion
    P. V. Moskalev
    Technical Physics, 2008, 53 : 1261 - 1266
  • [24] Fractal Brownian Motion of Colloidal Particles in Plasma
    K. G. Koss
    I. I. Lisina
    M. M. Vasiliev
    A. A. Alekseevskaya
    E. A. Kononov
    O. F. Petrov
    Plasma Physics Reports, 2023, 49 : 57 - 64
  • [25] The absence of arbitrage in a model with fractal Brownian motion
    Kuznetsov, YA
    RUSSIAN MATHEMATICAL SURVEYS, 1999, 54 (04) : 847 - 848
  • [26] Fractional Brownian motion models for polymers
    Chakravarti, N
    Sebastian, KL
    CHEMICAL PHYSICS LETTERS, 1997, 267 (1-2) : 9 - 13
  • [27] The Brownian motion in radiation fields.
    Fokker, AD
    PHYSIKALISCHE ZEITSCHRIFT, 1914, 15 : 96 - 105
  • [28] A Theoretical Analysis of Magnetic Particle Alignment in External Magnetic Fields Affected by Viscosity and Brownian Motion
    Krafcik, Andrej
    Babinec, Peter
    Strbak, Oliver
    Frollo, Ivan
    APPLIED SCIENCES-BASEL, 2021, 11 (20):
  • [29] Fractal Features of Fractional Brownian Motion and Their Application in Economics
    Cheng, Qing
    Jiao, Jinpu
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2019, 37 (03) : 863 - 868
  • [30] Fractal Brownian motion model of ship radiated noise
    CHEN Xiangdong
    GAO Xiang
    LU Jiren(Dept. of Radio Eng.
    ChineseJournalofAcoustics, 1999, (01) : 10 - 18