Fractal Brownian motion and polymers in external fields

被引:6
|
作者
Washington, GE
机构
[1] Chemistry Department, United States Military Academy at West Point, West Point
来源
JOURNAL OF CHEMICAL PHYSICS | 1996年 / 105卷 / 20期
关键词
D O I
10.1063/1.472760
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer behavior in external fields is modeled using fractal Brownian motion. The chain dimensions of polymer chains with and without excluded volume show a contour length dependence of N-v where v = h - 1. Chains with excluded volume have h = 3/5, chains without excluded volume, Gaussian chains have h = 1/2, and for chains in the collapsed state h = 1/3. This nonphysical result points to the distinction between fractals as models of the trajectory or path of a polymer that are self-similar on all length scales and real polymers that possess a lower and upper limit for self-similarity.
引用
收藏
页码:9324 / 9333
页数:10
相关论文
共 50 条
  • [2] On modified Brownian motion and polymers in external fields
    Sebastian, KL
    JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (16): : 6503 - 6504
  • [3] MOLECULAR THEORY OF BROWNIAN MOTION IN EXTERNAL FIELDS
    KIM, S
    OPPENHEIM, I
    PHYSICA, 1972, 57 (04): : 469 - +
  • [4] Brownian motion in a bath responding to external electric fields
    Tothova, Jana
    Soltys, Alojz
    Lisy, Vladimir
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 317
  • [5] Brownian motion and fractal nature
    Mitic, Vojislav
    Lazovic, Goran
    Milosevic, Dusan
    Lu, Chun-An
    Manojlovic, Jelena
    Tsay, Shwu-Chen
    Kruchinin, Sergey
    Vlahovic, Branislav
    MODERN PHYSICS LETTERS B, 2020, 34 (19-20):
  • [6] Fractal (fractional) Brownian motion
    Chow, Winston C.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2011, 3 (02): : 149 - 162
  • [7] NOTE ON THE MOTION OF BROWNIAN PARTICLES IN SHEAR AND CONSTANT EXTERNAL FIELDS.
    Foister, R.T.
    PCH. Physicochemical hydrodynamics, 1981, 2 (2-3): : 115 - 120
  • [8] BROWNIAN ROTATION IN EXTERNAL FIELDS
    KUNI, FM
    STORONKIN, BA
    THEORETICAL AND MATHEMATICAL PHYSICS, 1977, 31 (03) : 548 - 557
  • [9] Combinatorial fractal Brownian motion model
    朱炬波
    梁甸农
    Science in China(Series E:Technological Sciences) , 2000, (03) : 254 - 262
  • [10] FRACTAL DIMENSIONALITY OF BROWNIAN-MOTION
    RAPAPORT, DC
    PHYSICAL REVIEW LETTERS, 1984, 53 (20) : 1965 - 1965