LEAC: An efficient library for clustering with evolutionary algorithms

被引:8
|
作者
Robles-Berumen, Hermes [1 ]
Zafra, Amelia [2 ]
Fardoun, Habib M. [3 ]
Ventura, Sebastian [2 ,3 ,4 ]
机构
[1] Autonomous Univ Zacatecas, Elect Engn & Earth Sci, Zacatecas, Mexico
[2] Univ Cordoba, Dept Comp Sci & Numer Anal, Cordoba, Spain
[3] King Abdulaziz Univ, Fac Comp & Informat Technol, Dept Informat Syst, Jeddah, Saudi Arabia
[4] Maimonides Inst Biomed, Knowledge Discovery & Intelligent Syst Biomed Lab, Cordoba, Spain
关键词
Clustering; C plus plus library; Evolutionary algorithms; Genetic algorithms; Software;
D O I
10.1016/j.knosys.2019.05.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces LEAC, a new C++ partitioning clustering library based on evolutionary computation. LEAC provides plenty of elements (individual encoding schemes, genetic operators, evaluation metrics, among others) which allow an easy and fast development of new clustering algorithms. Furthermore, it includes 23 algorithms which represent the state-of-the-art in Evolutionary Algorithms for partial clustering. The paper describes through examples the main features and the design principles of the software, as well as how to use LEAC to carry out a comparison between different proposals and how to extend it by including new algorithms. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:117 / 119
页数:3
相关论文
共 50 条
  • [41] Efficient Evolutionary Algorithms for GPS Satellites Classification
    M. R. Mosavi
    M. Shiroie
    Arabian Journal for Science and Engineering, 2012, 37 : 2003 - 2015
  • [42] Efficient evolutionary algorithms for searching robust solutions
    Branke, J
    EVOLUTIONARY DESIGN AND MANUFACTURE, 2000, : 275 - 285
  • [43] Efficient algorithms of clustering adaptive nonlinear filters
    Lainiotis, DG
    Papaparaskeva, P
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (07) : 1454 - 1459
  • [44] Genetic diversity: applications of evolutionary algorithms to combinatorial library design
    Brown, RD
    Clark, DE
    EXPERT OPINION ON THERAPEUTIC PATENTS, 1998, 8 (11) : 1447 - 1459
  • [45] Clustering: an R library to facilitate the analysis and comparison of cluster algorithms
    Luis Alfonso Pérez Martos
    Ángel Miguel García-Vico
    Pedro González
    Cristóbal J. Carmona
    Progress in Artificial Intelligence, 2023, 12 : 33 - 44
  • [46] Clustering: an R library to facilitate the analysis and comparison of cluster algorithms
    Perez Martos, Luis Alfonso
    Miguel Garcia-Vico, Angel
    Gonzalez, Pedro
    Carmona, Cristobal J.
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2023, 12 (01) : 33 - 44
  • [47] Comparison of distributed evolutionary k-means clustering algorithms
    Naldi, M. C.
    Campello, R. J. G. B.
    NEUROCOMPUTING, 2015, 163 : 78 - 93
  • [48] Evolutionary soft co-clustering: formulations, algorithms, and applications
    Wenlu Zhang
    Rongjian Li
    Daming Feng
    Andrey Chernikov
    Nikos Chrisochoides
    Christopher Osgood
    Shuiwang Ji
    Data Mining and Knowledge Discovery, 2015, 29 : 765 - 791
  • [49] Ensembles with clustering-and-selection model using evolutionary algorithms
    Almeida, Leandro Maciel
    Galvao, Pedro Sereno
    PROCEEDINGS OF 2016 5TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS 2016), 2016, : 444 - 449
  • [50] Hybridization of evolutionary algorithms and local search by means of a clustering method
    Martinez-Estudillo, Alfonso C.
    Hervas-Martinez, Cesar
    Martinez-Estudillo, Francisco J.
    Garcia-Pedrajas, Nicolas
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2006, 36 (03): : 534 - 545