LEAC: An efficient library for clustering with evolutionary algorithms

被引:8
|
作者
Robles-Berumen, Hermes [1 ]
Zafra, Amelia [2 ]
Fardoun, Habib M. [3 ]
Ventura, Sebastian [2 ,3 ,4 ]
机构
[1] Autonomous Univ Zacatecas, Elect Engn & Earth Sci, Zacatecas, Mexico
[2] Univ Cordoba, Dept Comp Sci & Numer Anal, Cordoba, Spain
[3] King Abdulaziz Univ, Fac Comp & Informat Technol, Dept Informat Syst, Jeddah, Saudi Arabia
[4] Maimonides Inst Biomed, Knowledge Discovery & Intelligent Syst Biomed Lab, Cordoba, Spain
关键词
Clustering; C plus plus library; Evolutionary algorithms; Genetic algorithms; Software;
D O I
10.1016/j.knosys.2019.05.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces LEAC, a new C++ partitioning clustering library based on evolutionary computation. LEAC provides plenty of elements (individual encoding schemes, genetic operators, evaluation metrics, among others) which allow an easy and fast development of new clustering algorithms. Furthermore, it includes 23 algorithms which represent the state-of-the-art in Evolutionary Algorithms for partial clustering. The paper describes through examples the main features and the design principles of the software, as well as how to use LEAC to carry out a comparison between different proposals and how to extend it by including new algorithms. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:117 / 119
页数:3
相关论文
共 50 条
  • [21] Efficient stochastic algorithms for document clustering
    Forsati, Rana
    Mahdavi, Mehrdad
    Shamsfard, Mehrnoush
    Meybodi, Mohammad Reza
    INFORMATION SCIENCES, 2013, 220 : 269 - 291
  • [22] EFFICIENT SELECTION METHODSIN EVOLUTIONARY ALGORITHMS
    Stanczak, Jaroslaw
    COMPUTER SCIENCE-AGH, 2024, 25 (01): : 79 - 106
  • [23] EFFICIENT ALGORITHMS FOR INFERRING EVOLUTIONARY TREES
    GUSFIELD, D
    NETWORKS, 1991, 21 (01) : 19 - 28
  • [24] Efficient parallel hierarchical clustering algorithms
    Rajasekaran, S
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2005, 16 (06) : 497 - 502
  • [25] Parallel Library of Multi-objective Evolutionary Algorithms
    Leon, Coromoto
    Miranda, Gara
    Segredo, Eduardo
    Segura, Carlos
    PROCEEDINGS OF THE PARALLEL, DISTRIBUTED AND NETWORK-BASED PROCESSING, 2009, : 28 - 35
  • [26] Energy Efficient Clustering with Secure Routing Protocol Using Hybrid Evolutionary Algorithms for Mobile Adhoc Networks
    Selvakumar, M.
    Sudhakar, B.
    WIRELESS PERSONAL COMMUNICATIONS, 2022, 127 (03) : 1879 - 1897
  • [27] Energy Efficient Clustering with Secure Routing Protocol Using Hybrid Evolutionary Algorithms for Mobile Adhoc Networks
    M. Selvakumar
    B. Sudhakar
    Wireless Personal Communications, 2022, 127 (3) : 1879 - 1897
  • [28] An Evaluation on Competitive and Cooperative Evolutionary Algorithms for Data Clustering
    Pacifico, Luciano D. S.
    Ludermir, Teresa B.
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [29] Centralized Clustering Evolutionary Algorithms for Wireless Sensor Networks
    Hamza, Kamal S.
    Amir, Fathy
    INTERNATIONAL CONFERENCE ON INFORMATICS AND SYSTEMS (INFOS 2016), 2016, : 273 - 277
  • [30] Evolutionary algorithms for clustering gene-expression data
    Hruschka, ER
    de Castro, LN
    Campello, RJGB
    FOURTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2004, : 403 - 406