LEAC: An efficient library for clustering with evolutionary algorithms

被引:8
|
作者
Robles-Berumen, Hermes [1 ]
Zafra, Amelia [2 ]
Fardoun, Habib M. [3 ]
Ventura, Sebastian [2 ,3 ,4 ]
机构
[1] Autonomous Univ Zacatecas, Elect Engn & Earth Sci, Zacatecas, Mexico
[2] Univ Cordoba, Dept Comp Sci & Numer Anal, Cordoba, Spain
[3] King Abdulaziz Univ, Fac Comp & Informat Technol, Dept Informat Syst, Jeddah, Saudi Arabia
[4] Maimonides Inst Biomed, Knowledge Discovery & Intelligent Syst Biomed Lab, Cordoba, Spain
关键词
Clustering; C plus plus library; Evolutionary algorithms; Genetic algorithms; Software;
D O I
10.1016/j.knosys.2019.05.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces LEAC, a new C++ partitioning clustering library based on evolutionary computation. LEAC provides plenty of elements (individual encoding schemes, genetic operators, evaluation metrics, among others) which allow an easy and fast development of new clustering algorithms. Furthermore, it includes 23 algorithms which represent the state-of-the-art in Evolutionary Algorithms for partial clustering. The paper describes through examples the main features and the design principles of the software, as well as how to use LEAC to carry out a comparison between different proposals and how to extend it by including new algorithms. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:117 / 119
页数:3
相关论文
共 50 条
  • [31] Using evolutionary algorithms for model-based clustering
    Andrews, Jeffrey L.
    McNicholas, Paul D.
    PATTERN RECOGNITION LETTERS, 2013, 34 (09) : 987 - 992
  • [32] Evolutionary Multiobjective Clustering Algorithms With Ensemble for Patient Stratification
    Wang, Yunhe
    Li, Xiangtao
    Wong, Ka-Chun
    Chang, Yi
    Yang, Shengxiang
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (10) : 11027 - 11040
  • [33] Clustering of categoric data in medicine - Application of evolutionary algorithms
    Villmann, Thomas
    Albani, Conny
    COMPUTATIONAL INTELLIGENCE: THEORY AND APPLICATIONS, PROCEEDINGS, 2001, 2206 : 619 - 627
  • [34] Hybridizing evolutionary algorithms and clustering algorithms to find source-code clones
    Sutton, Andrew
    Kagdi, Huzefa
    Maletic, Jonathan I.
    Volkert, L. Gwenn
    GECCO 2005: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOLS 1 AND 2, 2005, : 1079 - 1080
  • [35] FliT: A Library for Simple and Efficient Persistent Algorithms
    Wei, Yuanhao
    Ben-David, Naama
    Friedman, Michal
    Blelloch, Guy E.
    Petrank, Erez
    PPOPP'22: PROCEEDINGS OF THE 27TH ACM SIGPLAN SYMPOSIUM ON PRINCIPLES AND PRACTICE OF PARALLEL PROGRAMMING, 2022, : 309 - 321
  • [36] Efficient Evolutionary Algorithms for GPS Satellites Classification
    Mosavi, M. R.
    Shiroie, M.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2012, 37 (07) : 2003 - 2015
  • [37] An Efficient Way of Introducing Gender Into Evolutionary Algorithms
    Kasten, Christian
    Fahr, Julian
    Klein, Markus
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (04) : 1005 - 1014
  • [38] Efficient learning of neural networks with evolutionary algorithms
    Siebel, Nils T.
    Krause, Jochen
    Sommer, Gerald
    PATTERN RECOGNITION, PROCEEDINGS, 2007, 4713 : 466 - +
  • [39] An efficient linear-time clustering algorithms
    Wang, L
    Zang, LJ
    Song, RF
    Proceedings of the 11th Joint International Computer Conference, 2005, : 678 - 681
  • [40] Efficient and Effective Algorithms for Clustering Uncertain Graphs
    Han, Kai
    Gui, Fei
    Xiao, Xiaokui
    Tang, Jing
    He, Yuntian
    Cao, Zongmai
    Hua, He
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2019, 12 (06): : 667 - 680